Properties

Label 2700.a.81000.1
Conductor $2700$
Discriminant $-81000$
Mordell-Weil group \(\Z/{3}\Z \oplus \Z/{6}\Z\)
Sato-Tate group $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R \times \R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q \times \Q\)
\(\End(J) \otimes \Q\) \(\Q \times \Q\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + 1)y = 5x^5 + 26x^4 + 12x^3 + 26x^2 + 5x$ (homogenize, simplify)
$y^2 + (x^3 + z^3)y = 5x^5z + 26x^4z^2 + 12x^3z^3 + 26x^2z^4 + 5xz^5$ (dehomogenize, simplify)
$y^2 = x^6 + 20x^5 + 104x^4 + 50x^3 + 104x^2 + 20x + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 5, 26, 12, 26, 5]), R([1, 0, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 5, 26, 12, 26, 5], R![1, 0, 0, 1]);
 
sage: X = HyperellipticCurve(R([1, 20, 104, 50, 104, 20, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(2700\) \(=\) \( 2^{2} \cdot 3^{3} \cdot 5^{2} \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-81000\) \(=\) \( - 2^{3} \cdot 3^{4} \cdot 5^{3} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(71148\) \(=\)  \( 2^{2} \cdot 3 \cdot 7^{2} \cdot 11^{2} \)
\( I_4 \)  \(=\) \(84879081\) \(=\)  \( 3^{2} \cdot 7 \cdot 1347287 \)
\( I_6 \)  \(=\) \(2273663276523\) \(=\)  \( 3^{2} \cdot 17 \cdot 14860544291 \)
\( I_{10} \)  \(=\) \(10368000\) \(=\)  \( 2^{10} \cdot 3^{4} \cdot 5^{3} \)
\( J_2 \)  \(=\) \(17787\) \(=\)  \( 3 \cdot 7^{2} \cdot 11^{2} \)
\( J_4 \)  \(=\) \(9645762\) \(=\)  \( 2 \cdot 3 \cdot 7 \cdot 83 \cdot 2767 \)
\( J_6 \)  \(=\) \(-1078366500\) \(=\)  \( - 2^{2} \cdot 3^{3} \cdot 5^{3} \cdot 23^{2} \cdot 151 \)
\( J_8 \)  \(=\) \(-28055407374036\) \(=\)  \( - 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 29 \cdot 548428481 \)
\( J_{10} \)  \(=\) \(81000\) \(=\)  \( 2^{3} \cdot 3^{4} \cdot 5^{3} \)
\( g_1 \)  \(=\) \(21980041417758601947/1000\)
\( g_2 \)  \(=\) \(335065445635338803/500\)
\( g_3 \)  \(=\) \(-8423969286117/2\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (1 : -1 : 0),\, (0 : 0 : 1),\, (0 : -1 : 1)\)
All points: \((1 : 0 : 0),\, (1 : -1 : 0),\, (0 : 0 : 1),\, (0 : -1 : 1)\)
All points: \((1 : -1 : 0),\, (1 : 1 : 0),\, (0 : -1 : 1),\, (0 : 1 : 1)\)

magma: [C![0,-1,1],C![0,0,1],C![1,-1,0],C![1,0,0]]; // minimal model
 
magma: [C![0,-1,1],C![0,1,1],C![1,-1,0],C![1,1,0]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{3}\Z \oplus \Z/{6}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(2 \cdot(0 : -1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x^2\) \(=\) \(0,\) \(y\) \(=\) \(-5xz^2 - z^3\) \(0\) \(3\)
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) \(2x^2 + 10xz + z^2\) \(=\) \(0,\) \(2y\) \(=\) \(-z^3\) \(0\) \(6\)
Generator $D_0$ Height Order
\(2 \cdot(0 : -1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x^2\) \(=\) \(0,\) \(y\) \(=\) \(-5xz^2 - z^3\) \(0\) \(3\)
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) \(2x^2 + 10xz + z^2\) \(=\) \(0,\) \(2y\) \(=\) \(-z^3\) \(0\) \(6\)
Generator $D_0$ Height Order
\(2 \cdot(0 : -1 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \(x^2\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - 10xz^2 - z^3\) \(0\) \(3\)
\(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) \(2x^2 + 10xz + z^2\) \(=\) \(0,\) \(2y\) \(=\) \(x^3 - z^3\) \(0\) \(6\)

2-torsion field: 4.0.5400.2

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(1\)
Regulator: \( 1 \)
Real period: \( 13.31090 \)
Tamagawa product: \( 18 \)
Torsion order:\( 18 \)
Leading coefficient: \( 0.739494 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(2\) \(3\) \(3\) \(( 1 - T )( 1 + T )\)
\(3\) \(3\) \(4\) \(3\) \(1 - T\)
\(5\) \(2\) \(3\) \(2\) \(( 1 + T )^{2}\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.90.1 yes
\(3\) 3.5760.3 yes

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\times\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over \(\Q\)

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  Elliptic curve isogeny class 90.b
  Elliptic curve isogeny class 30.a

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)an order of index \(2\) in \(\Z \times \Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R \times \R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);