Properties

Label 262144.a.262144.1
Conductor $262144$
Discriminant $-262144$
Mordell-Weil group \(\Z \oplus \Z/{2}\Z\)
Sato-Tate group $J(E_2)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\mathrm{M}_2(\R)\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\mathrm{M}_2(\Q)\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 = x^5 - 2x^3 - x$ (homogenize, simplify)
$y^2 = x^5z - 2x^3z^3 - xz^5$ (dehomogenize, simplify)
$y^2 = x^5 - 2x^3 - x$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, -1, 0, -2, 0, 1]), R([]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, -1, 0, -2, 0, 1], R![]);
 
sage: X = HyperellipticCurve(R([0, -1, 0, -2, 0, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(262144\) \(=\) \( 2^{18} \)
magma: Conductor(LSeries(C: ExcFactors:=[*<2,Valuation(262144,2),R![1]>*])); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-262144\) \(=\) \( - 2^{18} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(4\) \(=\)  \( 2^{2} \)
\( I_4 \)  \(=\) \(-14\) \(=\)  \( - 2 \cdot 7 \)
\( I_6 \)  \(=\) \(2\) \(=\)  \( 2 \)
\( I_{10} \)  \(=\) \(1\) \(=\)  \( 1 \)
\( J_2 \)  \(=\) \(32\) \(=\)  \( 2^{5} \)
\( J_4 \)  \(=\) \(640\) \(=\)  \( 2^{7} \cdot 5 \)
\( J_6 \)  \(=\) \(-6144\) \(=\)  \( - 2^{11} \cdot 3 \)
\( J_8 \)  \(=\) \(-151552\) \(=\)  \( - 2^{12} \cdot 37 \)
\( J_{10} \)  \(=\) \(262144\) \(=\)  \( 2^{18} \)
\( g_1 \)  \(=\) \(128\)
\( g_2 \)  \(=\) \(80\)
\( g_3 \)  \(=\) \(-24\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $D_4$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (0 : 0 : 1)\)
All points: \((1 : 0 : 0),\, (0 : 0 : 1)\)
All points: \((1 : 0 : 0),\, (0 : 0 : 1)\)

magma: [C![0,0,1],C![1,0,0]]; // minimal model
 
magma: [C![0,0,1],C![1,0,0]]; // simplified model
 

Number of rational Weierstrass points: \(2\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(x^2 + z^2\) \(=\) \(0,\) \(y\) \(=\) \(xz^2 + z^3\) \(1.123512\) \(\infty\)
\((0 : 0 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(x^2 + z^2\) \(=\) \(0,\) \(y\) \(=\) \(xz^2 + z^3\) \(1.123512\) \(\infty\)
\((0 : 0 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(x^2 + z^2\) \(=\) \(0,\) \(y\) \(=\) \(1/2xz^2 + 1/2z^3\) \(1.123512\) \(\infty\)
\((0 : 0 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)

2-torsion field: 4.0.512.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(1\)
Mordell-Weil rank: \(1\)
2-Selmer rank:\(2\)
Regulator: \( 1.123512 \)
Real period: \( 10.88380 \)
Tamagawa product: \( 1 \)
Torsion order:\( 2 \)
Leading coefficient: \( 3.057022 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(18\) \(18\) \(1\) \(1\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.90.3 yes
\(3\) 3.3240.5 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $J(E_2)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over the number field \(\Q (b) \simeq \) \(\Q(\zeta_{8})\) with defining polynomial:
  \(x^{4} + 1\)

Decomposes up to isogeny as the square of the elliptic curve isogeny class:
  \(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
  \(g_4 = -\frac{120320}{28561} b^{2} + \frac{489984}{28561}\)
  \(g_6 = -\frac{27344896}{371293} b^{3} + \frac{15777792}{371293} b\)
   Conductor norm: 1048576

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) \(\Q(\zeta_{8})\) with defining polynomial \(x^{4} + 1\)

Not of \(\GL_2\)-type over \(\overline{\Q}\)

Endomorphism ring over \(\overline{\Q}\):

\(\End (J_{\overline{\Q}})\)\(\simeq\)a non-Eichler order of index \(4\) in a maximal order of \(\End (J_{\overline{\Q}}) \otimes \Q\)
\(\End (J_{\overline{\Q}}) \otimes \Q \)\(\simeq\)\(\mathrm{M}_2(\)\(\Q\)\()\)
\(\End (J_{\overline{\Q}}) \otimes \R\)\(\simeq\) \(\mathrm{M}_2 (\R)\)

Remainder of the endomorphism lattice by field

Over subfield \(F \simeq \) \(\Q(\sqrt{-2}) \) with generator \(-a^{3} - a\) with minimal polynomial \(x^{2} + 2\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\sqrt{2}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{2}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R \times \R\)
  Sato Tate group: $J(E_1)$
  Of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) \(\Q(\sqrt{2}) \) with generator \(a^{3} - a\) with minimal polynomial \(x^{2} - 2\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\sqrt{2}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{2}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R \times \R\)
  Sato Tate group: $J(E_1)$
  Of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) \(\Q(\sqrt{-1}) \) with generator \(-a^{2}\) with minimal polynomial \(x^{2} + 1\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\sqrt{-1}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-1}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\C\)
  Sato Tate group: $E_2$
  Of \(\GL_2\)-type, simple

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);