Properties

Label 2500.a.400000.1
Conductor $2500$
Discriminant $-400000$
Mordell-Weil group \(\Z/{5}\Z\)
Sato-Tate group $J(E_1)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\mathrm{M}_2(\R)\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\mathrm{M}_2(\Q)\)
\(\End(J) \otimes \Q\) \(\Q \times \Q\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + 1)y = -2x^6 - 2x^5 + 2x^3 - 2x - 2$ (homogenize, simplify)
$y^2 + (x^3 + z^3)y = -2x^6 - 2x^5z + 2x^3z^3 - 2xz^5 - 2z^6$ (dehomogenize, simplify)
$y^2 = -7x^6 - 8x^5 + 10x^3 - 8x - 7$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-2, -2, 0, 2, 0, -2, -2]), R([1, 0, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-2, -2, 0, 2, 0, -2, -2], R![1, 0, 0, 1]);
 
sage: X = HyperellipticCurve(R([-7, -8, 0, 10, 0, -8, -7]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(2500\) \(=\) \( 2^{2} \cdot 5^{4} \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-400000\) \(=\) \( - 2^{7} \cdot 5^{5} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(860\) \(=\)  \( 2^{2} \cdot 5 \cdot 43 \)
\( I_4 \)  \(=\) \(36865\) \(=\)  \( 5 \cdot 73 \cdot 101 \)
\( I_6 \)  \(=\) \(8199455\) \(=\)  \( 5 \cdot 11 \cdot 43 \cdot 3467 \)
\( I_{10} \)  \(=\) \(16384\) \(=\)  \( 2^{14} \)
\( J_2 \)  \(=\) \(1075\) \(=\)  \( 5^{2} \cdot 43 \)
\( J_4 \)  \(=\) \(9750\) \(=\)  \( 2 \cdot 3 \cdot 5^{3} \cdot 13 \)
\( J_6 \)  \(=\) \(107500\) \(=\)  \( 2^{2} \cdot 5^{4} \cdot 43 \)
\( J_8 \)  \(=\) \(5125000\) \(=\)  \( 2^{3} \cdot 5^{6} \cdot 41 \)
\( J_{10} \)  \(=\) \(400000\) \(=\)  \( 2^{7} \cdot 5^{5} \)
\( g_1 \)  \(=\) \(459401384375/128\)
\( g_2 \)  \(=\) \(1937983125/64\)
\( g_3 \)  \(=\) \(9938375/32\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

This curve has no rational points.
This curve has no rational points.
This curve has no rational points.

magma: []; // minimal model
 
magma: []; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable except over $\R$ and $\Q_{5}$.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{5}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(2x^2 + 3xz + 2z^2\) \(=\) \(0,\) \(2y\) \(=\) \(-xz^2 - 2z^3\) \(0\) \(5\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(2x^2 + 3xz + 2z^2\) \(=\) \(0,\) \(2y\) \(=\) \(-xz^2 - 2z^3\) \(0\) \(5\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(2x^2 + 3xz + 2z^2\) \(=\) \(0,\) \(2y\) \(=\) \(x^3 - 2xz^2 - 3z^3\) \(0\) \(5\)

2-torsion field: 6.2.200000.1

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(0\)
Regulator: \( 1 \)
Real period: \( 3.411821 \)
Tamagawa product: \( 5 \)
Torsion order:\( 5 \)
Leading coefficient: \( 0.682364 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(2\) \(7\) \(5\) \(( 1 - T )( 1 + T )\)
\(5\) \(4\) \(5\) \(1\) \(1\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.60.2 no
\(3\) 3.2880.2 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $J(E_1)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over \(\Q\)

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  Elliptic curve isogeny class 50.b
  Elliptic curve isogeny class 50.a

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)an order of index \(2\) in \(\Z \times \Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R \times \R\)

Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) \(\Q(\sqrt{5}) \) with defining polynomial \(x^{2} - x - 1\)

Not of \(\GL_2\)-type over \(\overline{\Q}\)

Endomorphism ring over \(\overline{\Q}\):

\(\End (J_{\overline{\Q}})\)\(\simeq\)an Eichler order of index \(15\) in a maximal order of \(\End (J_{\overline{\Q}}) \otimes \Q\)
\(\End (J_{\overline{\Q}}) \otimes \Q \)\(\simeq\)\(\mathrm{M}_2(\)\(\Q\)\()\)
\(\End (J_{\overline{\Q}}) \otimes \R\)\(\simeq\) \(\mathrm{M}_2 (\R)\)

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);