Minimal equation
Minimal equation
Simplified equation
| $y^2 = 2x^5 + 6x^4 - 9x^3 - x^2 + 4x - 1$ | (homogenize, simplify) |
| $y^2 = 2x^5z + 6x^4z^2 - 9x^3z^3 - x^2z^4 + 4xz^5 - z^6$ | (dehomogenize, simplify) |
| $y^2 = 2x^5 + 6x^4 - 9x^3 - x^2 + 4x - 1$ | (homogenize, minimize) |
Invariants
| Conductor: | \( N \) | \(=\) | \(200704\) | \(=\) | \( 2^{12} \cdot 7^{2} \) |
|
| Discriminant: | \( \Delta \) | \(=\) | \(401408\) | \(=\) | \( 2^{13} \cdot 7^{2} \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
| \( I_2 \) | \(=\) | \(451\) | \(=\) | \( 11 \cdot 41 \) |
| \( I_4 \) | \(=\) | \(1330\) | \(=\) | \( 2 \cdot 5 \cdot 7 \cdot 19 \) |
| \( I_6 \) | \(=\) | \(187628\) | \(=\) | \( 2^{2} \cdot 7 \cdot 6701 \) |
| \( I_{10} \) | \(=\) | \(49\) | \(=\) | \( 7^{2} \) |
| \( J_2 \) | \(=\) | \(1804\) | \(=\) | \( 2^{2} \cdot 11 \cdot 41 \) |
| \( J_4 \) | \(=\) | \(121414\) | \(=\) | \( 2 \cdot 17 \cdot 3571 \) |
| \( J_6 \) | \(=\) | \(10025348\) | \(=\) | \( 2^{2} \cdot 2506337 \) |
| \( J_8 \) | \(=\) | \(836092099\) | \(=\) | \( 836092099 \) |
| \( J_{10} \) | \(=\) | \(401408\) | \(=\) | \( 2^{13} \cdot 7^{2} \) |
| \( g_1 \) | \(=\) | \(18658757027251/392\) | ||
| \( g_2 \) | \(=\) | \(5568886892657/3136\) | ||
| \( g_3 \) | \(=\) | \(509791452137/6272\) |
Automorphism group
| \(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2$ |
|
| \(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2$ |
|
Rational points
Known points: \((1 : 0 : 0),\, (1 : -1 : 1),\, (1 : 1 : 1),\, (1 : -2 : 2),\, (1 : 2 : 2)\)
Number of rational Weierstrass points: \(1\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z \oplus \Z \oplus \Z/{2}\Z\)
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \((1 : -2 : 2) + (1 : 1 : 1) - 2 \cdot(1 : 0 : 0)\) | \((x - z) (2x - z)\) | \(=\) | \(0,\) | \(2y\) | \(=\) | \(5xz^2 - 3z^3\) | \(0.772055\) | \(\infty\) |
| \((1 : -1 : 1) - (1 : 0 : 0)\) | \(x - z\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-z^3\) | \(0.501386\) | \(\infty\) |
| \(D_0 - 2 \cdot(1 : 0 : 0)\) | \(2x^2 - z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(2\) |
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \((1 : -2 : 2) + (1 : 1 : 1) - 2 \cdot(1 : 0 : 0)\) | \((x - z) (2x - z)\) | \(=\) | \(0,\) | \(2y\) | \(=\) | \(5xz^2 - 3z^3\) | \(0.772055\) | \(\infty\) |
| \((1 : -1 : 1) - (1 : 0 : 0)\) | \(x - z\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-z^3\) | \(0.501386\) | \(\infty\) |
| \(D_0 - 2 \cdot(1 : 0 : 0)\) | \(2x^2 - z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(2\) |
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \((1 : -1 : 2) + (1 : 1/2 : 1) - 2 \cdot(1 : 0 : 0)\) | \((x - z) (2x - z)\) | \(=\) | \(0,\) | \(2y\) | \(=\) | \(5/2xz^2 - 3/2z^3\) | \(0.772055\) | \(\infty\) |
| \((1 : -1/2 : 1) - (1 : 0 : 0)\) | \(x - z\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-1/2z^3\) | \(0.501386\) | \(\infty\) |
| \(D_0 - 2 \cdot(1 : 0 : 0)\) | \(2x^2 - z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(2\) |
2-torsion field: 6.6.1229312.1
BSD invariants
| Hasse-Weil conjecture: | unverified |
| Analytic rank: | \(2\) |
| Mordell-Weil rank: | \(2\) |
| 2-Selmer rank: | \(3\) |
| Regulator: | \( 0.336432 \) |
| Real period: | \( 16.21416 \) |
| Tamagawa product: | \( 2 \) |
| Torsion order: | \( 2 \) |
| Leading coefficient: | \( 2.727483 \) |
| Analytic order of Ш: | \( 1 \) (rounded) |
| Order of Ш: | square |
Local invariants
| Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number* | L-factor | Cluster picture | Tame reduction? |
|---|---|---|---|---|---|---|---|
| \(2\) | \(12\) | \(13\) | \(2\) | \(-1^*\) | \(1\) | no | |
| \(7\) | \(2\) | \(2\) | \(1\) | \(-1\) | \(1 + 7 T^{2}\) | yes |
Galois representations
The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.
| Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
|---|---|---|
| \(2\) | 2.120.5 | yes |
Sato-Tate group
| \(\mathrm{ST}\) | \(\simeq\) | $\mathrm{USp}(4)$ |
| \(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{USp}(4)\) |
Decomposition of the Jacobian
Simple over \(\overline{\Q}\)
Endomorphisms of the Jacobian
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
| \(\End (J_{})\) | \(\simeq\) | \(\Z\) |
| \(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
| \(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).