Learn more

Refine search


Results (4 matches)

  displayed columns for results
Label Class Conductor Rank* Torsion $\textrm{End}^0(J_{\overline\Q})$ Igusa-Clebsch invariants Igusa invariants G2-invariants Equation
200704.a.401408.1 200704.a \( 2^{12} \cdot 7^{2} \) $0$ $\Z/2\Z$ \(\Q\) $[43,16,-62,49]$ $[172,1062,23460,726819,401408]$ $[\frac{147008443}{392},\frac{42218217}{3136},\frac{10844385}{6272}]$ $y^2 = x^5 - x^3 - x^2 + 2x - 1$
200704.b.401408.1 200704.b \( 2^{12} \cdot 7^{2} \) $0$ $\Z/2\Z$ \(\Q\) $[195,1386,73458,49]$ $[780,10566,122756,-3972669,401408]$ $[\frac{281950621875}{392},\frac{39172784625}{3136},\frac{1166949225}{6272}]$ $y^2 = 2x^5 - 4x^4 - 3x^3 + 4x^2 + x - 1$
200704.c.401408.1 200704.c \( 2^{12} \cdot 7^{2} \) $1$ $\Z/2\Z$ \(\Q\) $[19,-68,-284,49]$ $[76,966,1860,-197949,401408]$ $[\frac{2476099}{392},\frac{473271}{448},\frac{167865}{6272}]$ $y^2 = x^5 - 2x^4 + x^3 + x^2 - 1$
200704.d.401408.1 200704.d \( 2^{12} \cdot 7^{2} \) $2$ $\Z/2\Z$ \(\Q\) $[451,1330,187628,49]$ $[1804,121414,10025348,836092099,401408]$ $[\frac{18658757027251}{392},\frac{5568886892657}{3136},\frac{509791452137}{6272}]$ $y^2 = 2x^5 + 6x^4 - 9x^3 - x^2 + 4x - 1$
  displayed columns for results