L-function data
Analytic rank: | \(2\) (upper bound) | ||||||||||||||||||||||||||||||
Mordell-Weil rank: | \(2\) | ||||||||||||||||||||||||||||||
Bad L-factors: |
| ||||||||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||||||||
See L-function page for more information |
Sato-Tate group
\(\mathrm{ST} =\) $E_6$, \(\quad \mathrm{ST}^0 = \mathrm{SU}(2)\)
Decomposition of the Jacobian
Splits over the number field \(\Q (b) \simeq \) 6.6.481170140857.2 with defining polynomial:
\(x^{6} - x^{5} - 90 x^{4} - 197 x^{3} + 974 x^{2} + 2568 x - 216\)
Decomposes up to isogeny as the square of the elliptic curve isogeny class:
\(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
\(g_4 = \frac{822572}{4131} b^{5} - \frac{24071329}{132192} b^{4} - \frac{790588679}{44064} b^{3} - \frac{336421157}{8262} b^{2} + \frac{25207787687}{132192} b + \frac{5807503411}{11016}\)
\(g_6 = -\frac{690048306955}{4758912} b^{5} + \frac{39620662249}{297432} b^{4} + \frac{767341747879}{58752} b^{3} + \frac{141002694663803}{4758912} b^{2} - \frac{660578532204017}{4758912} b - \frac{304311882533645}{793152}\)
Conductor norm: 64
Endomorphisms of the Jacobian
Of \(\GL_2\)-type over \(\Q\)
Endomorphism algebra over \(\Q\):
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{-3}) \) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\C\) |
Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) 6.6.481170140857.2 with defining polynomial \(x^{6} - x^{5} - 90 x^{4} - 197 x^{3} + 974 x^{2} + 2568 x - 216\)
Endomorphism algebra over \(\overline{\Q}\):
\(\End (J_{\overline{\Q}}) \otimes \Q \) | \(\simeq\) | \(\mathrm{M}_2(\)\(\Q\)\()\) |
\(\End (J_{\overline{\Q}}) \otimes \R\) | \(\simeq\) | \(\mathrm{M}_2 (\R)\) |
More complete information on endomorphism algebras and rings can be found on the pages of the individual curves in the isogeny class.
Genus 2 curves in isogeny class 188356.b
Label | Equation |
---|---|
188356.b.376712.1 | \(y^2 + (x^3 + x + 1)y = -4x^4 - 5x^3 + x\) |