Properties

Label 2.11.ag_x
Base field $\F_{11}$
Dimension $2$
$p$-rank $2$
Ordinary Yes
Supersingular No
Simple Yes
Geometrically simple No
Primitive Yes
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{11}$
Dimension:  $2$
L-polynomial:  $1 - 6 x + 23 x^{2} - 66 x^{3} + 121 x^{4}$
Frobenius angles:  $\pm0.158432477193$, $\pm0.491765810526$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{2}, \sqrt{-3})\)
Galois group:  $C_2^2$
Jacobians:  9

This isogeny class is simple but not geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains the Jacobians of 9 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 73 15841 1774192 212285241 26023682473 3147757252864 379942925705857 45947775208065129 5559917317706062192 672755884050430171201

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 6 132 1332 14500 161586 1776822 19497078 214349764 2357947692 25937651652

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{11}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{2}, \sqrt{-3})\).
Endomorphism algebra over $\overline{\F}_{11}$
The base change of $A$ to $\F_{11^{6}}$ is 1.1771561.dxe 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-6}) \)$)$
All geometric endomorphisms are defined over $\F_{11^{6}}$.
Remainder of endomorphism lattice by field

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.
TwistExtension DegreeCommon base change
2.11.g_x$2$2.121.k_av
2.11.a_ak$3$(not in LMFDB)
2.11.g_x$3$(not in LMFDB)
Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
2.11.g_x$2$2.121.k_av
2.11.a_ak$3$(not in LMFDB)
2.11.g_x$3$(not in LMFDB)
2.11.a_k$12$(not in LMFDB)
2.11.ai_bg$24$(not in LMFDB)
2.11.i_bg$24$(not in LMFDB)