Properties

Label 160507.a.160507.1
Conductor $160507$
Discriminant $-160507$
Mordell-Weil group \(\Z \oplus \Z \oplus \Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + y = x^5 + 2x^4 - 2x^3 - x^2$ (homogenize, simplify)
$y^2 + z^3y = x^5z + 2x^4z^2 - 2x^3z^3 - x^2z^4$ (dehomogenize, simplify)
$y^2 = 4x^5 + 8x^4 - 8x^3 - 4x^2 + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 0, -1, -2, 2, 1]), R([1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 0, -1, -2, 2, 1], R![1]);
 
sage: X = HyperellipticCurve(R([1, 0, -4, -8, 8, 4]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(160507\) \(=\) \( 160507 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-160507\) \(=\) \( -160507 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(224\) \(=\)  \( 2^{5} \cdot 7 \)
\( I_4 \)  \(=\) \(3856\) \(=\)  \( 2^{4} \cdot 241 \)
\( I_6 \)  \(=\) \(161264\) \(=\)  \( 2^{4} \cdot 10079 \)
\( I_{10} \)  \(=\) \(-642028\) \(=\)  \( - 2^{2} \cdot 160507 \)
\( J_2 \)  \(=\) \(112\) \(=\)  \( 2^{4} \cdot 7 \)
\( J_4 \)  \(=\) \(-120\) \(=\)  \( - 2^{3} \cdot 3 \cdot 5 \)
\( J_6 \)  \(=\) \(5328\) \(=\)  \( 2^{4} \cdot 3^{2} \cdot 37 \)
\( J_8 \)  \(=\) \(145584\) \(=\)  \( 2^{4} \cdot 3^{3} \cdot 337 \)
\( J_{10} \)  \(=\) \(-160507\) \(=\)  \( -160507 \)
\( g_1 \)  \(=\) \(-17623416832/160507\)
\( g_2 \)  \(=\) \(168591360/160507\)
\( g_3 \)  \(=\) \(-66834432/160507\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((0 : 0 : 1)\) \((0 : -1 : 1)\) \((1 : 0 : 1)\) \((-1 : 1 : 1)\) \((1 : -1 : 1)\)
\((-1 : -2 : 1)\) \((-2 : 3 : 1)\) \((-2 : -4 : 1)\) \((1 : -6 : 4)\) \((3 : 18 : 1)\) \((3 : -19 : 1)\)
\((1 : -58 : 4)\) \((6 : 99 : 1)\) \((6 : -100 : 1)\)
Known points
\((1 : 0 : 0)\) \((0 : 0 : 1)\) \((0 : -1 : 1)\) \((1 : 0 : 1)\) \((-1 : 1 : 1)\) \((1 : -1 : 1)\)
\((-1 : -2 : 1)\) \((-2 : 3 : 1)\) \((-2 : -4 : 1)\) \((1 : -6 : 4)\) \((3 : 18 : 1)\) \((3 : -19 : 1)\)
\((1 : -58 : 4)\) \((6 : 99 : 1)\) \((6 : -100 : 1)\)
Known points
\((1 : 0 : 0)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((1 : -1 : 1)\) \((1 : 1 : 1)\) \((-1 : -3 : 1)\)
\((-1 : 3 : 1)\) \((-2 : -7 : 1)\) \((-2 : 7 : 1)\) \((3 : -37 : 1)\) \((3 : 37 : 1)\) \((1 : -52 : 4)\)
\((1 : 52 : 4)\) \((6 : -199 : 1)\) \((6 : 199 : 1)\)

magma: [C![-2,-4,1],C![-2,3,1],C![-1,-2,1],C![-1,1,1],C![0,-1,1],C![0,0,1],C![1,-58,4],C![1,-6,4],C![1,-1,1],C![1,0,0],C![1,0,1],C![3,-19,1],C![3,18,1],C![6,-100,1],C![6,99,1]]; // minimal model
 
magma: [C![-2,-7,1],C![-2,7,1],C![-1,-3,1],C![-1,3,1],C![0,-1,1],C![0,1,1],C![1,-52,4],C![1,52,4],C![1,-1,1],C![1,0,0],C![1,1,1],C![3,-37,1],C![3,37,1],C![6,-199,1],C![6,199,1]]; // simplified model
 

Number of rational Weierstrass points: \(1\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((1 : -1 : 1) - (1 : 0 : 0)\) \(x - z\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.709131\) \(\infty\)
\((-1 : -2 : 1) - (1 : 0 : 0)\) \(x + z\) \(=\) \(0,\) \(y\) \(=\) \(-2z^3\) \(0.865919\) \(\infty\)
\((0 : -1 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.135793\) \(\infty\)
Generator $D_0$ Height Order
\((1 : -1 : 1) - (1 : 0 : 0)\) \(x - z\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.709131\) \(\infty\)
\((-1 : -2 : 1) - (1 : 0 : 0)\) \(x + z\) \(=\) \(0,\) \(y\) \(=\) \(-2z^3\) \(0.865919\) \(\infty\)
\((0 : -1 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.135793\) \(\infty\)
Generator $D_0$ Height Order
\((1 : -1 : 1) - (1 : 0 : 0)\) \(x - z\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.709131\) \(\infty\)
\((-1 : -3 : 1) - (1 : 0 : 0)\) \(x + z\) \(=\) \(0,\) \(y\) \(=\) \(-3z^3\) \(0.865919\) \(\infty\)
\((0 : -1 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.135793\) \(\infty\)

2-torsion field: 5.3.2568112.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(3\)   (upper bound)
Mordell-Weil rank: \(3\)
2-Selmer rank:\(3\)
Regulator: \( 0.067015 \)
Real period: \( 18.05420 \)
Tamagawa product: \( 1 \)
Torsion order:\( 1 \)
Leading coefficient: \( 1.209905 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(160507\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 599 T + 160507 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.6.1 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);