Minimal equation
Minimal equation
Simplified equation
$y^2 + x^3y = x^5 + x^4 - 2x^2 - 4x - 2$ | (homogenize, simplify) |
$y^2 + x^3y = x^5z + x^4z^2 - 2x^2z^4 - 4xz^5 - 2z^6$ | (dehomogenize, simplify) |
$y^2 = x^6 + 4x^5 + 4x^4 - 8x^2 - 16x - 8$ | (homogenize, minimize) |
Invariants
Conductor: | \( N \) | \(=\) | \(12544\) | \(=\) | \( 2^{8} \cdot 7^{2} \) | magma: Conductor(LSeries(C)); Factorization($1);
|
Discriminant: | \( \Delta \) | \(=\) | \(-175616\) | \(=\) | \( - 2^{9} \cdot 7^{3} \) | magma: Discriminant(C); Factorization(Integers()!$1);
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
\( I_2 \) | \(=\) | \(8\) | \(=\) | \( 2^{3} \) |
\( I_4 \) | \(=\) | \(-203\) | \(=\) | \( - 7 \cdot 29 \) |
\( I_6 \) | \(=\) | \(455\) | \(=\) | \( 5 \cdot 7 \cdot 13 \) |
\( I_{10} \) | \(=\) | \(686\) | \(=\) | \( 2 \cdot 7^{3} \) |
\( J_2 \) | \(=\) | \(16\) | \(=\) | \( 2^{4} \) |
\( J_4 \) | \(=\) | \(552\) | \(=\) | \( 2^{3} \cdot 3 \cdot 23 \) |
\( J_6 \) | \(=\) | \(-5632\) | \(=\) | \( - 2^{9} \cdot 11 \) |
\( J_8 \) | \(=\) | \(-98704\) | \(=\) | \( - 2^{4} \cdot 31 \cdot 199 \) |
\( J_{10} \) | \(=\) | \(175616\) | \(=\) | \( 2^{9} \cdot 7^{3} \) |
\( g_1 \) | \(=\) | \(2048/343\) | ||
\( g_2 \) | \(=\) | \(4416/343\) | ||
\( g_3 \) | \(=\) | \(-2816/343\) |
Automorphism group
\(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2$ | magma: AutomorphismGroup(C); IdentifyGroup($1);
|
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $D_4$ | magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
|
Rational points
Number of rational Weierstrass points: \(0\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z \oplus \Z/{2}\Z\)
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((-1 : 1 : 1) - (1 : -1 : 0)\) | \(z (x + z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(z^3\) | \(0.046418\) | \(\infty\) |
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) | \(x^2 - 2z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-xz^2\) | \(0\) | \(2\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((-1 : 1 : 1) - (1 : -1 : 0)\) | \(z (x + z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(z^3\) | \(0.046418\) | \(\infty\) |
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) | \(x^2 - 2z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-xz^2\) | \(0\) | \(2\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((-1 : 1 : 1) - (1 : -1 : 0)\) | \(z (x + z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^3 + 2z^3\) | \(0.046418\) | \(\infty\) |
\(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) | \(x^2 - 2z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^3 - 2xz^2\) | \(0\) | \(2\) |
BSD invariants
Hasse-Weil conjecture: | unverified |
Analytic rank: | \(1\) |
Mordell-Weil rank: | \(1\) |
2-Selmer rank: | \(2\) |
Regulator: | \( 0.046418 \) |
Real period: | \( 11.29042 \) |
Tamagawa product: | \( 6 \) |
Torsion order: | \( 2 \) |
Leading coefficient: | \( 0.786125 \) |
Analytic order of Ш: | \( 1 \) (rounded) |
Order of Ш: | square |
Local invariants
Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | L-factor | Cluster picture |
---|---|---|---|---|---|
\(2\) | \(8\) | \(9\) | \(3\) | \(1\) | |
\(7\) | \(2\) | \(3\) | \(2\) | \(1 + 7 T^{2}\) |
Galois representations
For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not the maximal image $\GSp(4,\F_\ell)$
Prime \(\ell\) | mod-\(\ell\) image |
---|---|
\(2\) | 2.90.1 |
\(3\) | 3.270.1 |
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $J(E_4)$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{SU}(2)\) |
Decomposition of the Jacobian
Splits over the number field \(\Q (b) \simeq \) 4.0.2744.1 with defining polynomial:
\(x^{4} - x^{3} + 3 x^{2} + 3 x + 2\)
Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
\(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
\(g_4 = -56 b^{3} + 112 b^{2} + 280 b + 112\)
\(g_6 = -812 b^{3} + 8596 b^{2} + 7700 b + 5124\)
Conductor norm: 1024
\(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
\(g_4 = -280 b^{3} + 560 b^{2} - 1288 b + 112\)
\(g_6 = -16338 b^{3} + 25704 b^{2} - 59150 b - 22764\)
Conductor norm: 1024
Endomorphisms of the Jacobian
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
\(\End (J_{})\) | \(\simeq\) | \(\Z\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) 8.0.481890304.3 with defining polynomial \(x^{8} - 2 x^{7} - 3 x^{6} + 8 x^{5} + x^{4} - 2 x^{3} + 23 x^{2} - 12 x + 2\)
Not of \(\GL_2\)-type over \(\overline{\Q}\)
Endomorphism ring over \(\overline{\Q}\):
\(\End (J_{\overline{\Q}})\) | \(\simeq\) | a non-Eichler order of index \(4\) in a maximal order of \(\End (J_{\overline{\Q}}) \otimes \Q\) |
\(\End (J_{\overline{\Q}}) \otimes \Q \) | \(\simeq\) | \(\mathrm{M}_2(\)\(\Q\)\()\) |
\(\End (J_{\overline{\Q}}) \otimes \R\) | \(\simeq\) | \(\mathrm{M}_2 (\R)\) |
Remainder of the endomorphism lattice by field
Over subfield \(F \simeq \) \(\Q(\sqrt{-2}) \) with generator \(\frac{1}{2} a^{7} - \frac{7}{8} a^{6} - \frac{7}{4} a^{5} + \frac{7}{2} a^{4} + \frac{7}{4} a^{3} - \frac{7}{8} a^{2} + \frac{21}{2} a - \frac{11}{4}\) with minimal polynomial \(x^{2} + 2\):
\(\End (J_{F})\) | \(\simeq\) | \(\Z [\sqrt{-1}]\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{-1}) \) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\C\) |
Of \(\GL_2\)-type, simple
Over subfield \(F \simeq \) \(\Q(\sqrt{14}) \) with generator \(-\frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{5}{4} a^{4} - \frac{5}{4} a^{3} - \frac{5}{2} a^{2} + \frac{3}{2} a - 4\) with minimal polynomial \(x^{2} - 14\):
\(\End (J_{F})\) | \(\simeq\) | \(\Z\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R\) |
Not of \(\GL_2\)-type, simple
Over subfield \(F \simeq \) \(\Q(\sqrt{-7}) \) with generator \(\frac{13}{32} a^{7} - \frac{23}{32} a^{6} - \frac{21}{16} a^{5} + \frac{45}{16} a^{4} + \frac{31}{32} a^{3} - \frac{9}{32} a^{2} + \frac{155}{16} a - \frac{33}{16}\) with minimal polynomial \(x^{2} - x + 2\):
\(\End (J_{F})\) | \(\simeq\) | \(\Z\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R\) |
Not of \(\GL_2\)-type, simple
Over subfield \(F \simeq \) \(\Q(\sqrt{-2}, \sqrt{-7})\) with generator \(\frac{3}{32} a^{7} - \frac{5}{32} a^{6} - \frac{7}{16} a^{5} + \frac{11}{16} a^{4} + \frac{25}{32} a^{3} - \frac{19}{32} a^{2} + \frac{13}{16} a + \frac{5}{16}\) with minimal polynomial \(x^{4} - 2 x^{3} + 9 x^{2} - 8 x + 2\):
\(\End (J_{F})\) | \(\simeq\) | \(\Z [\sqrt{-1}]\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{-1}) \) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\C\) |
Of \(\GL_2\)-type, simple
Over subfield \(F \simeq \) 4.2.21952.1 with generator \(\frac{3}{4} a^{7} - \frac{5}{4} a^{6} - \frac{11}{4} a^{5} + \frac{21}{4} a^{4} + \frac{5}{2} a^{3} - \frac{1}{2} a^{2} + 17 a - 4\) with minimal polynomial \(x^{4} - 2 x^{3} + 5 x^{2} - 4 x - 10\):
\(\End (J_{F})\) | \(\simeq\) | \(\Z [\sqrt{2}]\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{2}) \) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
Of \(\GL_2\)-type, simple
Over subfield \(F \simeq \) 4.0.2744.1 with generator \(-\frac{3}{16} a^{7} + \frac{1}{4} a^{6} + \frac{7}{8} a^{5} - \frac{5}{4} a^{4} - \frac{21}{16} a^{3} + \frac{1}{4} a^{2} - \frac{29}{8} a + \frac{1}{2}\) with minimal polynomial \(x^{4} - x^{3} + 3 x^{2} + 3 x + 2\):
\(\End (J_{F})\) | \(\simeq\) | an order of index \(2\) in \(\Z \times \Z\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q\) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
Of \(\GL_2\)-type, not simple
Over subfield \(F \simeq \) 4.0.2744.1 with generator \(\frac{5}{32} a^{7} - \frac{9}{32} a^{6} - \frac{9}{16} a^{5} + \frac{19}{16} a^{4} + \frac{7}{32} a^{3} + \frac{1}{32} a^{2} + \frac{59}{16} a - \frac{23}{16}\) with minimal polynomial \(x^{4} - x^{3} + 3 x^{2} + 3 x + 2\):
\(\End (J_{F})\) | \(\simeq\) | an order of index \(2\) in \(\Z \times \Z\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q\) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
Of \(\GL_2\)-type, not simple
Over subfield \(F \simeq \) 4.2.21952.1 with generator \(-\frac{1}{32} a^{7} - \frac{1}{32} a^{6} + \frac{5}{16} a^{5} - \frac{1}{16} a^{4} - \frac{35}{32} a^{3} + \frac{9}{32} a^{2} + \frac{1}{16} a - \frac{15}{16}\) with minimal polynomial \(x^{4} - 2 x^{3} + 5 x^{2} - 4 x - 10\):
\(\End (J_{F})\) | \(\simeq\) | \(\Z [\sqrt{2}]\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{2}) \) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
Of \(\GL_2\)-type, simple