Properties

Label 123201.c.369603.1
Conductor $123201$
Discriminant $-369603$
Mordell-Weil group \(\Z \oplus \Z\)
Sato-Tate group $E_6$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\mathrm{M}_2(\R)\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\mathrm{M}_2(\Q)\)
\(\End(J) \otimes \Q\) \(\mathsf{CM}\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + x + 1)y = x^4 + 5x^3 + 5x^2 + x$ (homogenize, simplify)
$y^2 + (x^3 + xz^2 + z^3)y = x^4z^2 + 5x^3z^3 + 5x^2z^4 + xz^5$ (dehomogenize, simplify)
$y^2 = x^6 + 6x^4 + 22x^3 + 21x^2 + 6x + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 1, 5, 5, 1]), R([1, 1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 1, 5, 5, 1], R![1, 1, 0, 1]);
 
sage: X = HyperellipticCurve(R([1, 6, 21, 22, 6, 0, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(123201\) \(=\) \( 3^{6} \cdot 13^{2} \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-369603\) \(=\) \( - 3^{7} \cdot 13^{2} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(108\) \(=\)  \( 2^{2} \cdot 3^{3} \)
\( I_4 \)  \(=\) \(3393\) \(=\)  \( 3^{2} \cdot 13 \cdot 29 \)
\( I_6 \)  \(=\) \(88335\) \(=\)  \( 3^{2} \cdot 5 \cdot 13 \cdot 151 \)
\( I_{10} \)  \(=\) \(-194688\) \(=\)  \( - 2^{7} \cdot 3^{2} \cdot 13^{2} \)
\( J_2 \)  \(=\) \(81\) \(=\)  \( 3^{4} \)
\( J_4 \)  \(=\) \(-999\) \(=\)  \( - 3^{3} \cdot 37 \)
\( J_6 \)  \(=\) \(-3267\) \(=\)  \( - 3^{3} \cdot 11^{2} \)
\( J_8 \)  \(=\) \(-315657\) \(=\)  \( - 3^{6} \cdot 433 \)
\( J_{10} \)  \(=\) \(-369603\) \(=\)  \( - 3^{7} \cdot 13^{2} \)
\( g_1 \)  \(=\) \(-1594323/169\)
\( g_2 \)  \(=\) \(242757/169\)
\( g_3 \)  \(=\) \(9801/169\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_6$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $D_6$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((-1 : 0 : 1)\) \((0 : -1 : 1)\) \((-1 : 1 : 1)\)
\((-5 : 5 : 2)\) \((2 : 37 : 3)\) \((-3 : 52 : 5)\) \((-3 : -75 : 5)\) \((2 : -90 : 3)\) \((-5 : 132 : 2)\)
Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((-1 : 0 : 1)\) \((0 : -1 : 1)\) \((-1 : 1 : 1)\)
\((-5 : 5 : 2)\) \((2 : 37 : 3)\) \((-3 : 52 : 5)\) \((-3 : -75 : 5)\) \((2 : -90 : 3)\) \((-5 : 132 : 2)\)
Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((-1 : -1 : 1)\) \((-1 : 1 : 1)\)
\((2 : -127 : 3)\) \((2 : 127 : 3)\) \((-5 : -127 : 2)\) \((-5 : 127 : 2)\) \((-3 : -127 : 5)\) \((-3 : 127 : 5)\)

magma: [C![-5,5,2],C![-5,132,2],C![-3,-75,5],C![-3,52,5],C![-1,0,1],C![-1,1,1],C![0,-1,1],C![0,0,1],C![1,-1,0],C![1,0,0],C![2,-90,3],C![2,37,3]]; // minimal model
 
magma: [C![-5,-127,2],C![-5,127,2],C![-3,-127,5],C![-3,127,5],C![-1,-1,1],C![-1,1,1],C![0,-1,1],C![0,1,1],C![1,-1,0],C![1,1,0],C![2,-127,3],C![2,127,3]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((-1 : 1 : 1) - (1 : -1 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(z^3\) \(0.170953\) \(\infty\)
\((0 : 0 : 1) - (1 : 0 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-x^3\) \(0.170953\) \(\infty\)
Generator $D_0$ Height Order
\((-1 : 1 : 1) - (1 : -1 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(z^3\) \(0.170953\) \(\infty\)
\((0 : 0 : 1) - (1 : 0 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-x^3\) \(0.170953\) \(\infty\)
Generator $D_0$ Height Order
\((-1 : 1 : 1) - (1 : -1 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + xz^2 + 3z^3\) \(0.170953\) \(\infty\)
\((0 : 1 : 1) - (1 : 1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 + xz^2 + z^3\) \(0.170953\) \(\infty\)

2-torsion field: 6.0.369603.2

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: \(2\)
Mordell-Weil rank: \(2\)
2-Selmer rank:\(2\)
Regulator: \( 0.021918 \)
Real period: \( 16.98607 \)
Tamagawa product: \( 3 \)
Torsion order:\( 1 \)
Leading coefficient: \( 1.116945 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(3\) \(6\) \(7\) \(3\) \(1\)
\(13\) \(2\) \(2\) \(1\) \(1 + 2 T + 13 T^{2}\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.40.3 no
\(3\) 3.480.12 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $E_6$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over the number field \(\Q (b) \simeq \) \(\Q(\zeta_{13})^+\) with defining polynomial:
  \(x^{6} - x^{5} - 5 x^{4} + 4 x^{3} + 6 x^{2} - 3 x - 1\)

Decomposes up to isogeny as the square of the elliptic curve isogeny class:
  \(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
  \(g_4 = -\frac{67149}{16} b^{5} + \frac{18351}{2} b^{4} + \frac{165915}{16} b^{3} - \frac{235161}{8} b^{2} + \frac{33759}{4} b + \frac{15633}{4}\)
  \(g_6 = -\frac{94866525}{64} b^{5} + \frac{50567517}{16} b^{4} + \frac{245069253}{64} b^{3} - \frac{164210085}{16} b^{2} + \frac{88140663}{32} b + \frac{83317221}{64}\)
   Conductor norm: 387420489

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\C\)

Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) \(\Q(\zeta_{13})^+\) with defining polynomial \(x^{6} - x^{5} - 5 x^{4} + 4 x^{3} + 6 x^{2} - 3 x - 1\)

Not of \(\GL_2\)-type over \(\overline{\Q}\)

Endomorphism ring over \(\overline{\Q}\):

\(\End (J_{\overline{\Q}})\)\(\simeq\)an Eichler order of index \(3\) in a maximal order of \(\End (J_{\overline{\Q}}) \otimes \Q\)
\(\End (J_{\overline{\Q}}) \otimes \Q \)\(\simeq\)\(\mathrm{M}_2(\)\(\Q\)\()\)
\(\End (J_{\overline{\Q}}) \otimes \R\)\(\simeq\) \(\mathrm{M}_2 (\R)\)

Remainder of the endomorphism lattice by field

Over subfield \(F \simeq \) \(\Q(\sqrt{13}) \) with generator \(-a^{4} + a^{3} + 4 a^{2} - 2 a - 2\) with minimal polynomial \(x^{2} - x - 3\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\C\)
  Sato Tate group: $E_3$
  Of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) 3.3.169.1 with generator \(a^{3} - a^{2} - 3 a + 2\) with minimal polynomial \(x^{3} - x^{2} - 4 x - 1\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\C\)
  Sato Tate group: $E_2$
  Of \(\GL_2\)-type, simple

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);