Learn more

Refine search


Results (3 matches)

  displayed columns for results
Label Class Conductor Rank* Torsion $\textrm{End}^0(J_{\overline\Q})$ Igusa-Clebsch invariants Igusa invariants G2-invariants Equation
123201.a.123201.1 123201.a \( 3^{6} \cdot 13^{2} \) $0$ $\Z/3\Z$ \(\mathrm{M}_2(\Q)\) $[484,11817,1489605,64896]$ $[363,1059,-1049,-375567,123201]$ $[\frac{25937424601}{507},\frac{625361033}{1521},-\frac{15358409}{13689}]$ $y^2 + (x^3 + 1)y = x^3 + 3$
123201.b.123201.1 123201.b \( 3^{6} \cdot 13^{2} \) $2$ $\mathsf{trivial}$ \(\Q\) $[112,468,16536,2028]$ $[168,474,-5872,-302793,123201]$ $[\frac{550731776}{507},\frac{27747328}{1521},-\frac{18414592}{13689}]$ $y^2 + x^3y = 2x^3 - 3x^2 + 3x - 1$
123201.c.369603.1 123201.c \( 3^{6} \cdot 13^{2} \) $2$ $\mathsf{trivial}$ \(\mathrm{M}_2(\Q)\) $[108,3393,88335,-194688]$ $[81,-999,-3267,-315657,-369603]$ $[-\frac{1594323}{169},\frac{242757}{169},\frac{9801}{169}]$ $y^2 + (x^3 + x + 1)y = x^4 + 5x^3 + 5x^2 + x$
  displayed columns for results