| 123201.a.123201.1 |
123201.a |
\( 3^{6} \cdot 13^{2} \) |
\( - 3^{6} \cdot 13^{2} \) |
$0$ |
$0$ |
$\Z/3\Z$ |
\(\mathrm{M}_2(\Q)\) |
\(\Q\) |
|
$J(E_6)$ |
|
✓ |
|
$C_2$ |
$D_6$ |
$2$ |
$0$ |
2.20.3, 3.2880.4 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(11.975116\) |
\(1.330568\) |
$[484,11817,1489605,64896]$ |
$[363,1059,-1049,-375567,123201]$ |
$[\frac{25937424601}{507},\frac{625361033}{1521},-\frac{15358409}{13689}]$ |
$y^2 + (x^3 + 1)y = x^3 + 3$ |
| 123201.b.123201.1 |
123201.b |
\( 3^{6} \cdot 13^{2} \) |
\( 3^{6} \cdot 13^{2} \) |
$2$ |
$2$ |
$\mathsf{trivial}$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,3$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$6$ |
$0$ |
2.2.1, 3.480.12 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(0.250269\) |
\(9.202831\) |
\(2.303185\) |
$[112,468,16536,2028]$ |
$[168,474,-5872,-302793,123201]$ |
$[\frac{550731776}{507},\frac{27747328}{1521},-\frac{18414592}{13689}]$ |
$y^2 + x^3y = 2x^3 - 3x^2 + 3x - 1$ |
| 123201.c.369603.1 |
123201.c |
\( 3^{6} \cdot 13^{2} \) |
\( - 3^{7} \cdot 13^{2} \) |
$2$ |
$2$ |
$\mathsf{trivial}$ |
\(\mathrm{M}_2(\Q)\) |
\(\mathsf{CM}\) |
✓ |
$E_6$ |
|
✓ |
|
$C_6$ |
$D_6$ |
$12$ |
$0$ |
2.40.3, 3.480.12 |
✓ |
✓ |
$1$ |
\( 3 \) |
\(0.021919\) |
\(16.986079\) |
\(1.116945\) |
$[108,3393,88335,-194688]$ |
$[81,-999,-3267,-315657,-369603]$ |
$[-\frac{1594323}{169},\frac{242757}{169},\frac{9801}{169}]$ |
$y^2 + (x^3 + x + 1)y = x^4 + 5x^3 + 5x^2 + x$ |