The Jacobian of this curve is isogenous to that of the quotient of the modular curve $X_0(35)$ by the Atkin-Lehner involution $w_7$ , which has discriminant $5^77^3$.
Minimal equation
Minimal equation
Simplified equation
| $y^2 + (x^3 + x^2)y = 2x^3 + x^2 + x + 2$ | (homogenize, simplify) | 
| $y^2 + (x^3 + x^2z)y = 2x^3z^3 + x^2z^4 + xz^5 + 2z^6$ | (dehomogenize, simplify) | 
| $y^2 = x^6 + 2x^5 + x^4 + 8x^3 + 4x^2 + 4x + 8$ | (homogenize, minimize) | 
Invariants
| Conductor: | \( N \) | \(=\) | \(1225\) | \(=\) | \( 5^{2} \cdot 7^{2} \) |  | 
| Discriminant: | \( \Delta \) | \(=\) | \(6125\) | \(=\) | \( 5^{3} \cdot 7^{2} \) |  | 
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
| \( I_2 \) | \(=\) | \(320\) | \(=\) | \( 2^{6} \cdot 5 \) | 
| \( I_4 \) | \(=\) | \(14344\) | \(=\) | \( 2^{3} \cdot 11 \cdot 163 \) | 
| \( I_6 \) | \(=\) | \(962481\) | \(=\) | \( 3 \cdot 13 \cdot 23 \cdot 29 \cdot 37 \) | 
| \( I_{10} \) | \(=\) | \(-24500\) | \(=\) | \( - 2^{2} \cdot 5^{3} \cdot 7^{2} \) | 
| \( J_2 \) | \(=\) | \(160\) | \(=\) | \( 2^{5} \cdot 5 \) | 
| \( J_4 \) | \(=\) | \(-1324\) | \(=\) | \( - 2^{2} \cdot 331 \) | 
| \( J_6 \) | \(=\) | \(8791\) | \(=\) | \( 59 \cdot 149 \) | 
| \( J_8 \) | \(=\) | \(-86604\) | \(=\) | \( - 2^{2} \cdot 3 \cdot 7 \cdot 1031 \) | 
| \( J_{10} \) | \(=\) | \(-6125\) | \(=\) | \( - 5^{3} \cdot 7^{2} \) | 
| \( g_1 \) | \(=\) | \(-838860800/49\) | ||
| \( g_2 \) | \(=\) | \(43384832/49\) | ||
| \( g_3 \) | \(=\) | \(-9001984/245\) | 
Automorphism group
| \(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2$ |  | 
| \(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2$ |  | 
Rational points
Number of rational Weierstrass points: \(1\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z/{8}\Z\)
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) | \(2x^2 - xz + 2z^2\) | \(=\) | \(0,\) | \(4y\) | \(=\) | \(xz^2 + 6z^3\) | \(0\) | \(8\) | 
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) | \(2x^2 - xz + 2z^2\) | \(=\) | \(0,\) | \(4y\) | \(=\) | \(xz^2 + 6z^3\) | \(0\) | \(8\) | 
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) | \(2x^2 - xz + 2z^2\) | \(=\) | \(0,\) | \(4y\) | \(=\) | \(x^3 + x^2z + 2xz^2 + 12z^3\) | \(0\) | \(8\) | 
BSD invariants
| Hasse-Weil conjecture: | verified | 
| Analytic rank: | \(0\) | 
| Mordell-Weil rank: | \(0\) | 
| 2-Selmer rank: | \(1\) | 
| Regulator: | \( 1 \) | 
| Real period: | \( 11.92789 \) | 
| Tamagawa product: | \( 2 \) | 
| Torsion order: | \( 8 \) | 
| Leading coefficient: | \( 0.372746 \) | 
| Analytic order of Ш: | \( 1 \) (rounded) | 
| Order of Ш: | square | 
Local invariants
| Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number | L-factor | Cluster picture | Tame reduction? | 
|---|---|---|---|---|---|---|---|
| \(5\) | \(2\) | \(3\) | \(2\) | \(1\) | \(( 1 - T )^{2}\) | yes | |
| \(7\) | \(2\) | \(2\) | \(1\) | \(1\) | \(( 1 + T )^{2}\) | yes | 
Galois representations
For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.
For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.
| Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? | 
|---|---|---|
| \(2\) | 2.60.1 | yes | 
| \(3\) | 3.72.2 | no | 
Sato-Tate group
| \(\mathrm{ST}\) | \(\simeq\) | $\mathrm{SU}(2)\times\mathrm{SU}(2)$ | 
| \(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{SU}(2)\times\mathrm{SU}(2)\) | 
Decomposition of the Jacobian
Simple over \(\overline{\Q}\)
Endomorphisms of the Jacobian
Of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
| \(\End (J_{})\) | \(\simeq\) | \(\Z [\frac{1 + \sqrt{17}}{2}]\) | 
| \(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{17}) \) | 
| \(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) | 
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).
