Learn more

Refine search


Results (4 matches)

  displayed columns for results
Label Class Conductor Rank* Torsion $\textrm{End}^0(J_{\overline\Q})$ Igusa-Clebsch invariants Igusa invariants G2-invariants Equation
1083.a.1083.1 1083.a \( 3 \cdot 19^{2} \) $1$ $\Z/3\Z$ \(\Q \times \Q\) $[56,244,928,4332]$ $[28,-8,264,1832,1083]$ $[17210368/1083,-175616/1083,68992/361]$ $y^2 + (x^3 + x^2 + x + 1)y = -x^3$
1083.a.20577.1 1083.a \( 3 \cdot 19^{2} \) $1$ $\Z/3\Z$ \(\Q \times \Q\) $[904,13684,4578992,82308]$ $[452,6232,-8664,-10688488,20577]$ $[18866536236032/20577,30289293824/1083,-1634432/19]$ $y^2 + x^3y = x^5 - 5x^4 + 11x^3 - 13x^2 + 9x - 3$
1083.b.87723.1 1083.b \( 3 \cdot 19^{2} \) $0$ $\Z/15\Z$ \(\Q \times \Q\) $[5464,8692,15768656,350892]$ $[2732,309544,46549080,7838649656,87723]$ $[152196082896530432/87723,6311963449851392/87723,1429770125440/361]$ $y^2 + y = -x^6 - 3x^5 - 8x^4 - 11x^3 - 14x^2 - 9x - 6$
1083.b.390963.1 1083.b \( 3 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ \(\Q \times \Q\) $[150440,1945515892,68956865081488,-1563852]$ $[75220,-88500632,98386538568,-107931608328616,-390963]$ $[-2408056349828975363200000/390963,1982406707133537344000/20577,-27053302090985600/19]$ $y^2 + y = -x^6 + 3x^5 - 50x^4 + 95x^3 - 14x^2 - 33x - 6$
  displayed columns for results