Minimal equation
Minimal equation
Simplified equation
| $y^2 + x^3y = 2x^3 + 3$ | (homogenize, simplify) |
| $y^2 + x^3y = 2x^3z^3 + 3z^6$ | (dehomogenize, simplify) |
| $y^2 = x^6 + 8x^3 + 12$ | (homogenize, minimize) |
Invariants
| Conductor: | \( N \) | \(=\) | \(104976\) | \(=\) | \( 2^{4} \cdot 3^{8} \) |
|
| Discriminant: | \( \Delta \) | \(=\) | \(104976\) | \(=\) | \( 2^{4} \cdot 3^{8} \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
| \( I_2 \) | \(=\) | \(104\) | \(=\) | \( 2^{3} \cdot 13 \) |
| \( I_4 \) | \(=\) | \(837\) | \(=\) | \( 3^{3} \cdot 31 \) |
| \( I_6 \) | \(=\) | \(21105\) | \(=\) | \( 3^{2} \cdot 5 \cdot 7 \cdot 67 \) |
| \( I_{10} \) | \(=\) | \(-54\) | \(=\) | \( - 2 \cdot 3^{3} \) |
| \( J_2 \) | \(=\) | \(312\) | \(=\) | \( 2^{3} \cdot 3 \cdot 13 \) |
| \( J_4 \) | \(=\) | \(-966\) | \(=\) | \( - 2 \cdot 3 \cdot 7 \cdot 23 \) |
| \( J_6 \) | \(=\) | \(-976\) | \(=\) | \( - 2^{4} \cdot 61 \) |
| \( J_8 \) | \(=\) | \(-309417\) | \(=\) | \( - 3 \cdot 17 \cdot 6067 \) |
| \( J_{10} \) | \(=\) | \(-104976\) | \(=\) | \( - 2^{4} \cdot 3^{8} \) |
| \( g_1 \) | \(=\) | \(-760408064/27\) | ||
| \( g_2 \) | \(=\) | \(22637888/81\) | ||
| \( g_3 \) | \(=\) | \(659776/729\) |
Automorphism group
| \(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2$ |
|
| \(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $D_6$ |
|
Rational points
Number of rational Weierstrass points: \(0\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z/{3}\Z\)
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \(D_0 - 2 \cdot(1 : -1 : 0)\) | \(z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(3\) |
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \(D_0 - 2 \cdot(1 : -1 : 0)\) | \(z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(3\) |
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \(D_0 - 2 \cdot(1 : -1 : 0)\) | \(z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^3\) | \(0\) | \(3\) |
2-torsion field: 9.1.24794911296.1
BSD invariants
| Hasse-Weil conjecture: | unverified |
| Analytic rank: | \(0\) |
| Mordell-Weil rank: | \(0\) |
| 2-Selmer rank: | \(0\) |
| Regulator: | \( 1 \) |
| Real period: | \( 11.94656 \) |
| Tamagawa product: | \( 1 \) |
| Torsion order: | \( 3 \) |
| Leading coefficient: | \( 1.327396 \) |
| Analytic order of Ш: | \( 1 \) (rounded) |
| Order of Ш: | square |
Local invariants
| Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number* | L-factor | Cluster picture | Tame reduction? |
|---|---|---|---|---|---|---|---|
| \(2\) | \(4\) | \(4\) | \(1\) | \(-1^*\) | \(1 + 2 T^{2}\) | no | |
| \(3\) | \(8\) | \(8\) | \(1\) | \(-1^*\) | \(1\) | no |
Galois representations
For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.
For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.
| Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
|---|---|---|
| \(2\) | 2.40.1 | no |
| \(3\) | 3.2880.4 | yes |
Sato-Tate group
| \(\mathrm{ST}\) | \(\simeq\) | $J(E_6)$ |
| \(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{SU}(2)\) |
Decomposition of the Jacobian
Splits over the number field \(\Q (b) \simeq \) 6.2.45349632.2 with defining polynomial:
\(x^{6} - 12\)
Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
\(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
\(g_4 = -144 b^{5} + 540 b^{2}\)
\(g_6 = 18144 b^{3} - 53136\)
Conductor norm: 81
\(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
\(g_4 = 144 b^{5} + 540 b^{2}\)
\(g_6 = -18144 b^{3} - 53136\)
Conductor norm: 81
Endomorphisms of the Jacobian
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
| \(\End (J_{})\) | \(\simeq\) | \(\Z\) |
| \(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
| \(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a)\) with defining polynomial \(x^{12} - 3 x^{10} - 30 x^{8} + 77 x^{6} + 510 x^{4} + 537 x^{2} + 169\)
Not of \(\GL_2\)-type over \(\overline{\Q}\)
Endomorphism ring over \(\overline{\Q}\):
| \(\End (J_{\overline{\Q}})\) | \(\simeq\) | an Eichler order of index \(3\) in a maximal order of \(\End (J_{\overline{\Q}}) \otimes \Q\) |
| \(\End (J_{\overline{\Q}}) \otimes \Q \) | \(\simeq\) | \(\mathrm{M}_2(\)\(\Q\)\()\) |
| \(\End (J_{\overline{\Q}}) \otimes \R\) | \(\simeq\) | \(\mathrm{M}_2 (\R)\) |
Remainder of the endomorphism lattice by field
Over subfield \(F \simeq \) \(\Q(\sqrt{-3}) \) with generator \(-\frac{78}{6137} a^{10} + \frac{225}{6137} a^{8} + \frac{2602}{6137} a^{6} - \frac{7122}{6137} a^{4} - \frac{42018}{6137} a^{2} - \frac{20770}{6137}\) with minimal polynomial \(x^{2} - x + 1\):
| \(\End (J_{F})\) | \(\simeq\) | \(\Z [\frac{1 + \sqrt{-3}}{2}]\) |
| \(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{-3}) \) |
| \(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\C\) |
Of \(\GL_2\)-type, simple
Over subfield \(F \simeq \) \(\Q(\sqrt{3}) \) with generator \(\frac{411}{9386} a^{11} - \frac{1597}{9386} a^{9} - \frac{10653}{9386} a^{7} + \frac{39369}{9386} a^{5} + \frac{172859}{9386} a^{3} + \frac{91617}{9386} a\) with minimal polynomial \(x^{2} - 3\):
| \(\End (J_{F})\) | \(\simeq\) | \(\Z\) |
| \(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
| \(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R\) |
Not of \(\GL_2\)-type, simple
Over subfield \(F \simeq \) \(\Q(\sqrt{-1}) \) with generator \(-\frac{27}{159562} a^{11} - \frac{829}{159562} a^{9} + \frac{5373}{159562} a^{7} + \frac{19449}{159562} a^{5} - \frac{129483}{159562} a^{3} - \frac{283131}{159562} a\) with minimal polynomial \(x^{2} + 1\):
| \(\End (J_{F})\) | \(\simeq\) | \(\Z\) |
| \(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
| \(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R\) |
Not of \(\GL_2\)-type, simple
Over subfield \(F \simeq \) 3.1.972.1 with generator \(\frac{1}{361} a^{10} - \frac{8}{361} a^{8} + \frac{10}{361} a^{6} + \frac{27}{361} a^{4} + \frac{14}{361} a^{2} + \frac{828}{361}\) with minimal polynomial \(x^{3} - 12\):
| \(\End (J_{F})\) | \(\simeq\) | \(\Z\) |
| \(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
| \(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R\) |
Not of \(\GL_2\)-type, simple
Over subfield \(F \simeq \) 3.1.972.1 with generator \(-\frac{281}{6137} a^{10} + \frac{1146}{6137} a^{8} + \frac{6823}{6137} a^{6} - \frac{26701}{6137} a^{4} - \frac{109954}{6137} a^{2} - \frac{66361}{6137}\) with minimal polynomial \(x^{3} - 12\):
| \(\End (J_{F})\) | \(\simeq\) | \(\Z\) |
| \(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
| \(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R\) |
Not of \(\GL_2\)-type, simple
Over subfield \(F \simeq \) 3.1.972.1 with generator \(\frac{264}{6137} a^{10} - \frac{1010}{6137} a^{8} - \frac{6993}{6137} a^{6} + \frac{26242}{6137} a^{4} + \frac{109716}{6137} a^{2} + \frac{52285}{6137}\) with minimal polynomial \(x^{3} - 12\):
| \(\End (J_{F})\) | \(\simeq\) | \(\Z\) |
| \(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
| \(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R\) |
Not of \(\GL_2\)-type, simple
Over subfield \(F \simeq \) \(\Q(\zeta_{12})\) with generator \(\frac{1740}{79781} a^{11} - \frac{13989}{159562} a^{9} - \frac{43932}{79781} a^{7} + \frac{344361}{159562} a^{5} + \frac{702280}{79781} a^{3} + \frac{637179}{159562} a\) with minimal polynomial \(x^{4} - x^{2} + 1\):
| \(\End (J_{F})\) | \(\simeq\) | \(\Z [\frac{1 + \sqrt{-3}}{2}]\) |
| \(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{-3}) \) |
| \(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\C\) |
Of \(\GL_2\)-type, simple
Over subfield \(F \simeq \) 6.0.2834352.1 with generator \(-\frac{43}{6137} a^{10} + \frac{99}{12274} a^{8} + \frac{1774}{6137} a^{6} - \frac{5343}{12274} a^{4} - \frac{31686}{6137} a^{2} - \frac{54165}{12274}\) with minimal polynomial \(x^{6} + 12\):
| \(\End (J_{F})\) | \(\simeq\) | \(\Z [\frac{1 + \sqrt{-3}}{2}]\) |
| \(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{-3}) \) |
| \(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\C\) |
Of \(\GL_2\)-type, simple
Over subfield \(F \simeq \) 6.0.15116544.4 with generator \(\frac{21}{159562} a^{11} - \frac{1}{722} a^{10} - \frac{844}{79781} a^{9} + \frac{4}{361} a^{8} + \frac{4209}{79781} a^{7} - \frac{5}{361} a^{6} + \frac{11332}{79781} a^{5} - \frac{27}{722} a^{4} - \frac{151231}{159562} a^{3} - \frac{7}{361} a^{2} - \frac{325657}{159562} a - \frac{414}{361}\) with minimal polynomial \(x^{6} - 6 x^{3} + 18\):
| \(\End (J_{F})\) | \(\simeq\) | \(\Z [\sqrt{3}]\) |
| \(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{3}) \) |
| \(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
Of \(\GL_2\)-type, simple
Over subfield \(F \simeq \) 6.2.45349632.2 with generator \(-\frac{3507}{159562} a^{11} + \frac{6580}{79781} a^{9} + \frac{93237}{159562} a^{7} - \frac{162456}{79781} a^{5} - \frac{1534043}{159562} a^{3} - \frac{539936}{79781} a\) with minimal polynomial \(x^{6} - 12\):
| \(\End (J_{F})\) | \(\simeq\) | an order of index \(2\) in \(\Z \times \Z\) |
| \(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q\) |
| \(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
Of \(\GL_2\)-type, not simple
Over subfield \(F \simeq \) 6.2.45349632.2 with generator \(-\frac{2001}{159562} a^{11} + \frac{6679}{159562} a^{9} + \frac{62279}{159562} a^{7} - \frac{204621}{159562} a^{5} - \frac{962985}{159562} a^{3} - \frac{256889}{159562} a\) with minimal polynomial \(x^{6} - 12\):
| \(\End (J_{F})\) | \(\simeq\) | an order of index \(2\) in \(\Z \times \Z\) |
| \(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q\) |
| \(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
Of \(\GL_2\)-type, not simple
Over subfield \(F \simeq \) 6.2.45349632.2 with generator \(\frac{162}{4693} a^{11} - \frac{1167}{9386} a^{9} - \frac{4574}{4693} a^{7} + \frac{31149}{9386} a^{5} + \frac{73442}{4693} a^{3} + \frac{78633}{9386} a\) with minimal polynomial \(x^{6} - 12\):
| \(\End (J_{F})\) | \(\simeq\) | an order of index \(2\) in \(\Z \times \Z\) |
| \(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q\) |
| \(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
Of \(\GL_2\)-type, not simple
Over subfield \(F \simeq \) 6.0.15116544.4 with generator \(\frac{3313}{159562} a^{11} + \frac{281}{12274} a^{10} - \frac{10563}{159562} a^{9} - \frac{573}{6137} a^{8} - \frac{50410}{79781} a^{7} - \frac{6823}{12274} a^{6} + \frac{149748}{79781} a^{5} + \frac{26701}{12274} a^{4} + \frac{830216}{79781} a^{3} + \frac{54977}{6137} a^{2} + \frac{1020453}{159562} a + \frac{66361}{12274}\) with minimal polynomial \(x^{6} - 6 x^{3} + 18\):
| \(\End (J_{F})\) | \(\simeq\) | \(\Z [\sqrt{3}]\) |
| \(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{3}) \) |
| \(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
Of \(\GL_2\)-type, simple
Over subfield \(F \simeq \) 6.0.15116544.4 with generator \(-\frac{1667}{79781} a^{11} - \frac{132}{6137} a^{10} + \frac{12251}{159562} a^{9} + \frac{505}{6137} a^{8} + \frac{46201}{79781} a^{7} + \frac{6993}{12274} a^{6} - \frac{161080}{79781} a^{5} - \frac{13121}{6137} a^{4} - \frac{1509201}{159562} a^{3} - \frac{54858}{6137} a^{2} - \frac{347398}{79781} a - \frac{52285}{12274}\) with minimal polynomial \(x^{6} - 6 x^{3} + 18\):
| \(\End (J_{F})\) | \(\simeq\) | \(\Z [\sqrt{3}]\) |
| \(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{3}) \) |
| \(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
Of \(\GL_2\)-type, simple