Properties

Label 100227.a.902043.1
Conductor 100227
Discriminant -902043
Mordell-Weil group \(\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Learn more about

Show commands for: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + y = x^5 + x^4 + 23x^2 + 57x + 36$ (homogenize, simplify)
$y^2 + z^3y = x^5z + x^4z^2 + 23x^2z^4 + 57xz^5 + 36z^6$ (dehomogenize, simplify)
$y^2 = 4x^5 + 4x^4 + 92x^2 + 228x + 145$ (minimize, homogenize)

magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![36, 57, 23, 0, 1, 1], R![1]);
 
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([36, 57, 23, 0, 1, 1]), R([1]));
 
magma: X,pi:= SimplifiedModel(C);
 
sage: X = HyperellipticCurve(R([145, 228, 92, 0, 4, 4]))
 

Invariants

Conductor: \( N \)  =  \(100227\) = \( 3 \cdot 33409 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  =  \(-902043\) = \( - 3^{3} \cdot 33409 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  = \(30592\) =  \( 2^{7} \cdot 239 \)
\( I_4 \)  = \(-177920\) =  \( - 2^{8} \cdot 5 \cdot 139 \)
\( I_6 \)  = \(-1623008256\) =  \( - 2^{10} \cdot 3 \cdot 37 \cdot 109 \cdot 131 \)
\( I_{10} \)  = \(-3694768128\) =  \( - 2^{12} \cdot 3^{3} \cdot 33409 \)
\( J_2 \)  = \(3824\) =  \( 2^{4} \cdot 239 \)
\( J_4 \)  = \(611144\) =  \( 2^{3} \cdot 79 \cdot 967 \)
\( J_6 \)  = \(130289488\) =  \( 2^{4} \cdot 7 \cdot 751 \cdot 1549 \)
\( J_8 \)  = \(31182503344\) =  \( 2^{4} \cdot 29 \cdot 181 \cdot 371291 \)
\( J_{10} \)  = \(-902043\) =  \( - 3^{3} \cdot 33409 \)
\( g_1 \)  = \(-817691377217306624/902043\)
\( g_2 \)  = \(-34174109226336256/902043\)
\( g_3 \)  = \(-1905220056076288/902043\)

magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (-1 : 1 : 1),\, (-1 : -2 : 1)\)

magma: [C![-1,-2,1],C![-1,1,1],C![1,0,0]];
 

Number of rational Weierstrass points: \(1\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian:

Group structure: \(\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(x^2 - 2xz - 6z^2\) \(=\) \(0,\) \(y\) \(=\) \(7xz^2 + 11z^3\) \(0.051324\) \(\infty\)

2-torsion field: 5.3.1603632.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(1\)
Mordell-Weil rank: \(1\)
2-Selmer rank:\(1\)
Regulator: \( 0.051324 \)
Real period: \( 7.555720 \)
Tamagawa product: \( 3 \)
Torsion order:\( 1 \)
Leading coefficient: \( 1.163379 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor
\(3\) \(3\) \(1\) \(3\) \(( 1 - T )( 1 + T + 3 T^{2} )\)
\(33409\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + 126 T + 33409 T^{2} )\)

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).