Minimal equation
Minimal equation
Simplified equation
| $y^2 + y = x^5 + x^4 + 23x^2 + 57x + 36$ | (homogenize, simplify) |
| $y^2 + z^3y = x^5z + x^4z^2 + 23x^2z^4 + 57xz^5 + 36z^6$ | (dehomogenize, simplify) |
| $y^2 = 4x^5 + 4x^4 + 92x^2 + 228x + 145$ | (homogenize, minimize) |
Invariants
| Conductor: | \( N \) | \(=\) | \(100227\) | \(=\) | \( 3 \cdot 33409 \) |
|
| Discriminant: | \( \Delta \) | \(=\) | \(-902043\) | \(=\) | \( - 3^{3} \cdot 33409 \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
| \( I_2 \) | \(=\) | \(7648\) | \(=\) | \( 2^{5} \cdot 239 \) |
| \( I_4 \) | \(=\) | \(-11120\) | \(=\) | \( - 2^{4} \cdot 5 \cdot 139 \) |
| \( I_6 \) | \(=\) | \(-25359504\) | \(=\) | \( - 2^{4} \cdot 3 \cdot 37 \cdot 109 \cdot 131 \) |
| \( I_{10} \) | \(=\) | \(-3608172\) | \(=\) | \( - 2^{2} \cdot 3^{3} \cdot 33409 \) |
| \( J_2 \) | \(=\) | \(3824\) | \(=\) | \( 2^{4} \cdot 239 \) |
| \( J_4 \) | \(=\) | \(611144\) | \(=\) | \( 2^{3} \cdot 79 \cdot 967 \) |
| \( J_6 \) | \(=\) | \(130289488\) | \(=\) | \( 2^{4} \cdot 7 \cdot 751 \cdot 1549 \) |
| \( J_8 \) | \(=\) | \(31182503344\) | \(=\) | \( 2^{4} \cdot 29 \cdot 181 \cdot 371291 \) |
| \( J_{10} \) | \(=\) | \(-902043\) | \(=\) | \( - 3^{3} \cdot 33409 \) |
| \( g_1 \) | \(=\) | \(-817691377217306624/902043\) | ||
| \( g_2 \) | \(=\) | \(-34174109226336256/902043\) | ||
| \( g_3 \) | \(=\) | \(-1905220056076288/902043\) |
Automorphism group
| \(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2$ |
|
| \(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2$ |
|
Rational points
All points: \((1 : 0 : 0),\, (-1 : 1 : 1),\, (-1 : -2 : 1)\)
Number of rational Weierstrass points: \(1\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z\)
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \(D_0 - 2 \cdot(1 : 0 : 0)\) | \(x^2 - 2xz - 6z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(7xz^2 + 11z^3\) | \(0.051324\) | \(\infty\) |
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \(D_0 - 2 \cdot(1 : 0 : 0)\) | \(x^2 - 2xz - 6z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(7xz^2 + 11z^3\) | \(0.051324\) | \(\infty\) |
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \(D_0 - 2 \cdot(1 : 0 : 0)\) | \(x^2 - 2xz - 6z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(14xz^2 + 23z^3\) | \(0.051324\) | \(\infty\) |
2-torsion field: 5.3.1603632.1
BSD invariants
| Hasse-Weil conjecture: | unverified |
| Analytic rank: | \(1\) |
| Mordell-Weil rank: | \(1\) |
| 2-Selmer rank: | \(1\) |
| Regulator: | \( 0.051324 \) |
| Real period: | \( 7.555720 \) |
| Tamagawa product: | \( 3 \) |
| Torsion order: | \( 1 \) |
| Leading coefficient: | \( 1.163379 \) |
| Analytic order of Ш: | \( 1 \) (rounded) |
| Order of Ш: | square |
Local invariants
| Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number | L-factor | Cluster picture | Tame reduction? |
|---|---|---|---|---|---|---|---|
| \(3\) | \(1\) | \(3\) | \(3\) | \(-1\) | \(( 1 - T )( 1 + T + 3 T^{2} )\) | yes | |
| \(33409\) | \(1\) | \(1\) | \(1\) | \(1\) | \(( 1 + T )( 1 + 126 T + 33409 T^{2} )\) | yes |
Galois representations
The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.
| Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
|---|---|---|
| \(2\) | 2.6.1 | no |
Sato-Tate group
| \(\mathrm{ST}\) | \(\simeq\) | $\mathrm{USp}(4)$ |
| \(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{USp}(4)\) |
Decomposition of the Jacobian
Simple over \(\overline{\Q}\)
Endomorphisms of the Jacobian
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
| \(\End (J_{})\) | \(\simeq\) | \(\Z\) |
| \(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
| \(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).