Properties

Label 100076.a.200152.1
Conductor 100076
Discriminant 200152
Mordell-Weil group \(\Z \times \Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Learn more about

Show commands for: SageMath / Magma

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + x + 1)y = -6x^4 + 10x^3 - 2x^2$ (homogenize, simplify)
$y^2 + (x^3 + xz^2 + z^3)y = -6x^4z^2 + 10x^3z^3 - 2x^2z^4$ (dehomogenize, simplify)
$y^2 = x^6 - 22x^4 + 42x^3 - 7x^2 + 2x + 1$ (minimize, homogenize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 0, -2, 10, -6]), R([1, 1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 0, -2, 10, -6], R![1, 1, 0, 1]);
 
sage: X = HyperellipticCurve(R([1, 2, -7, 42, -22, 0, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  =  \(100076\) = \( 2^{2} \cdot 127 \cdot 197 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  =  \(200152\) = \( 2^{3} \cdot 127 \cdot 197 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  = \(7880\) =  \( 2^{3} \cdot 5 \cdot 197 \)
\( I_4 \)  = \(-345596\) =  \( - 2^{2} \cdot 86399 \)
\( I_6 \)  = \(-1468066040\) =  \( - 2^{3} \cdot 5 \cdot 7 \cdot 5243093 \)
\( I_{10} \)  = \(819822592\) =  \( 2^{15} \cdot 127 \cdot 197 \)
\( J_2 \)  = \(985\) =  \( 5 \cdot 197 \)
\( J_4 \)  = \(44026\) =  \( 2 \cdot 22013 \)
\( J_6 \)  = \(3775940\) =  \( 2^{2} \cdot 5 \cdot 7^{2} \cdot 3853 \)
\( J_8 \)  = \(445253056\) =  \( 2^{6} \cdot 67 \cdot 103837 \)
\( J_{10} \)  = \(200152\) =  \( 2^{3} \cdot 127 \cdot 197 \)
\( g_1 \)  = \(4706682753125/1016\)
\( g_2 \)  = \(106787814625/508\)
\( g_3 \)  = \(4649126125/254\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((0 : -1 : 1)\) \((2 : -3 : 1)\) \((1 : -1 : 5)\)
\((2 : -8 : 1)\) \((3 : -13 : 1)\) \((3 : -18 : 1)\) \((1 : -150 : 5)\)

magma: [C![0,-1,1],C![0,0,1],C![1,-150,5],C![1,-1,0],C![1,-1,5],C![1,0,0],C![2,-8,1],C![2,-3,1],C![3,-18,1],C![3,-13,1]];
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \times \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((0 : -1 : 1) - (1 : 0 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - z^3\) \(0.479087\) \(\infty\)
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) \(x^2 - 3xz + z^2\) \(=\) \(0,\) \(y\) \(=\) \(-4xz^2\) \(0.077183\) \(\infty\)

2-torsion field: 6.2.12809728.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(2\)
Mordell-Weil rank: \(2\)
2-Selmer rank:\(2\)
Regulator: \( 0.035573 \)
Real period: \( 13.92968 \)
Tamagawa product: \( 3 \)
Torsion order:\( 1 \)
Leading coefficient: \( 1.486586 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor
\(2\) \(3\) \(2\) \(3\) \(1 + T + T^{2}\)
\(127\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 - 16 T + 127 T^{2} )\)
\(197\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 - 24 T + 197 T^{2} )\)

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).