Minimal equation
Minimal equation
Simplified equation
| $y^2 + (x^3 + x + 1)y = -6x^4 + 10x^3 - 2x^2$ | (homogenize, simplify) |
| $y^2 + (x^3 + xz^2 + z^3)y = -6x^4z^2 + 10x^3z^3 - 2x^2z^4$ | (dehomogenize, simplify) |
| $y^2 = x^6 - 22x^4 + 42x^3 - 7x^2 + 2x + 1$ | (homogenize, minimize) |
Invariants
| Conductor: | \( N \) | \(=\) | \(100076\) | \(=\) | \( 2^{2} \cdot 127 \cdot 197 \) |
|
| Discriminant: | \( \Delta \) | \(=\) | \(200152\) | \(=\) | \( 2^{3} \cdot 127 \cdot 197 \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
| \( I_2 \) | \(=\) | \(3940\) | \(=\) | \( 2^{2} \cdot 5 \cdot 197 \) |
| \( I_4 \) | \(=\) | \(-86399\) | \(=\) | \( -86399 \) |
| \( I_6 \) | \(=\) | \(-183508255\) | \(=\) | \( - 5 \cdot 7 \cdot 5243093 \) |
| \( I_{10} \) | \(=\) | \(25619456\) | \(=\) | \( 2^{10} \cdot 127 \cdot 197 \) |
| \( J_2 \) | \(=\) | \(985\) | \(=\) | \( 5 \cdot 197 \) |
| \( J_4 \) | \(=\) | \(44026\) | \(=\) | \( 2 \cdot 22013 \) |
| \( J_6 \) | \(=\) | \(3775940\) | \(=\) | \( 2^{2} \cdot 5 \cdot 7^{2} \cdot 3853 \) |
| \( J_8 \) | \(=\) | \(445253056\) | \(=\) | \( 2^{6} \cdot 67 \cdot 103837 \) |
| \( J_{10} \) | \(=\) | \(200152\) | \(=\) | \( 2^{3} \cdot 127 \cdot 197 \) |
| \( g_1 \) | \(=\) | \(4706682753125/1016\) | ||
| \( g_2 \) | \(=\) | \(106787814625/508\) | ||
| \( g_3 \) | \(=\) | \(4649126125/254\) |
Automorphism group
| \(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2$ |
|
| \(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2$ |
|
Rational points
| Known points | |||||
|---|---|---|---|---|---|
| \((1 : 0 : 0)\) | \((1 : -1 : 0)\) | \((0 : 0 : 1)\) | \((0 : -1 : 1)\) | \((2 : -3 : 1)\) | \((1 : -1 : 5)\) |
| \((2 : -8 : 1)\) | \((3 : -13 : 1)\) | \((3 : -18 : 1)\) | \((1 : -150 : 5)\) | ||
| Known points | |||||
|---|---|---|---|---|---|
| \((1 : 0 : 0)\) | \((1 : -1 : 0)\) | \((0 : 0 : 1)\) | \((0 : -1 : 1)\) | \((2 : -3 : 1)\) | \((1 : -1 : 5)\) |
| \((2 : -8 : 1)\) | \((3 : -13 : 1)\) | \((3 : -18 : 1)\) | \((1 : -150 : 5)\) | ||
| Known points | |||||
|---|---|---|---|---|---|
| \((1 : -1 : 0)\) | \((1 : 1 : 0)\) | \((0 : -1 : 1)\) | \((0 : 1 : 1)\) | \((2 : -5 : 1)\) | \((2 : 5 : 1)\) |
| \((3 : -5 : 1)\) | \((3 : 5 : 1)\) | \((1 : -149 : 5)\) | \((1 : 149 : 5)\) | ||
Number of rational Weierstrass points: \(0\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z \oplus \Z\)
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \((0 : -1 : 1) - (1 : 0 : 0)\) | \(z x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-x^3 - z^3\) | \(0.479087\) | \(\infty\) |
| \(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) | \(x^2 - 3xz + z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-4xz^2\) | \(0.077183\) | \(\infty\) |
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \((0 : -1 : 1) - (1 : 0 : 0)\) | \(z x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-x^3 - z^3\) | \(0.479087\) | \(\infty\) |
| \(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) | \(x^2 - 3xz + z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-4xz^2\) | \(0.077183\) | \(\infty\) |
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \((0 : -1 : 1) - (1 : 1 : 0)\) | \(z x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-x^3 + xz^2 - z^3\) | \(0.479087\) | \(\infty\) |
| \(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) | \(x^2 - 3xz + z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^3 - 7xz^2 + z^3\) | \(0.077183\) | \(\infty\) |
2-torsion field: 6.2.12809728.1
BSD invariants
| Hasse-Weil conjecture: | unverified |
| Analytic rank: | \(2\) |
| Mordell-Weil rank: | \(2\) |
| 2-Selmer rank: | \(2\) |
| Regulator: | \( 0.035573 \) |
| Real period: | \( 13.92968 \) |
| Tamagawa product: | \( 3 \) |
| Torsion order: | \( 1 \) |
| Leading coefficient: | \( 1.486586 \) |
| Analytic order of Ш: | \( 1 \) (rounded) |
| Order of Ш: | square |
Local invariants
| Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number* | L-factor | Cluster picture | Tame reduction? |
|---|---|---|---|---|---|---|---|
| \(2\) | \(2\) | \(3\) | \(3\) | \(1^*\) | \(1 + T + T^{2}\) | yes | |
| \(127\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(( 1 - T )( 1 - 16 T + 127 T^{2} )\) | yes | |
| \(197\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(( 1 - T )( 1 - 24 T + 197 T^{2} )\) | yes |
Galois representations
The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) .
Sato-Tate group
| \(\mathrm{ST}\) | \(\simeq\) | $\mathrm{USp}(4)$ |
| \(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{USp}(4)\) |
Decomposition of the Jacobian
Simple over \(\overline{\Q}\)
Endomorphisms of the Jacobian
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
| \(\End (J_{})\) | \(\simeq\) | \(\Z\) |
| \(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
| \(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).