y2=x3−138915x−19059138
|
(homogenize, simplify) |
y2z=x3−138915xz2−19059138z3
|
(dehomogenize, simplify) |
y2=x3−138915x−19059138
|
(homogenize, minimize) |
sage:E = EllipticCurve([0, 0, 0, -138915, -19059138])
gp:E = ellinit([0, 0, 0, -138915, -19059138])
magma:E := EllipticCurve([0, 0, 0, -138915, -19059138]);
oscar:E = elliptic_curve([0, 0, 0, -138915, -19059138])
sage:E.short_weierstrass_model()
magma:WeierstrassModel(E);
oscar:short_weierstrass_model(E)
trivial
magma:MordellWeilGroup(E);
Invariants
Conductor: |
N |
= |
95256 | = | 23⋅35⋅72 |
sage:E.conductor().factor()
gp:ellglobalred(E)[1]
magma:Conductor(E);
oscar:conductor(E)
|
Discriminant: |
Δ |
= |
14640169818580992 | = | 211⋅311⋅79 |
sage:E.discriminant().factor()
gp:E.disc
magma:Discriminant(E);
oscar:discriminant(E)
|
j-invariant: |
j |
= |
20250 | = | 2⋅34⋅53 |
sage:E.j_invariant().factor()
gp:E.j
magma:jInvariant(E);
oscar:j_invariant(E)
|
Endomorphism ring: |
End(E) | = | Z |
Geometric endomorphism ring: |
End(EQ) |
= |
Z
(no potential complex multiplication)
|
sage:E.has_cm()
magma:HasComplexMultiplication(E);
|
Sato-Tate group: |
ST(E) | = | SU(2) |
Faltings height: |
hFaltings | ≈ | 1.8610530690579830707988118389 |
gp:ellheight(E)
magma:FaltingsHeight(E);
oscar:faltings_height(E)
|
Stable Faltings height: |
hstable | ≈ | −1.2408257228592189921083069639 |
magma:StableFaltingsHeight(E);
oscar:stable_faltings_height(E)
|
abc quality: |
Q | ≈ | 1.1084359145429683 |
|
Szpiro ratio: |
σm | ≈ | 4.111752121025949 |
|
Analytic rank: |
ran | = | 0
|
sage:E.analytic_rank()
gp:ellanalyticrank(E)
magma:AnalyticRank(E);
|
Mordell-Weil rank: |
r | = | 0
|
sage:E.rank()
gp:[lower,upper] = ellrank(E)
magma:Rank(E);
|
Regulator: |
Reg(E/Q) | = | 1 |
sage:E.regulator()
gp:G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
magma:Regulator(E);
|
Real period: |
Ω | ≈ | 0.24805117812623986450540400211 |
sage:E.period_lattice().omega()
gp:if(E.disc>0,2,1)*E.omega[1]
magma:(Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: |
∏pcp | = | 6
= 1⋅3⋅2
|
sage:E.tamagawa_numbers()
gp:gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma:TamagawaNumbers(E);
oscar:tamagawa_numbers(E)
|
Torsion order: |
#E(Q)tor | = | 1 |
sage:E.torsion_order()
gp:elltors(E)[1]
magma:Order(TorsionSubgroup(E));
oscar:prod(torsion_structure(E)[1])
|
Special value: |
L(E,1) | ≈ | 1.4883070687574391870324240127 |
sage:r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp:[r,L1r] = ellanalyticrank(E); L1r/r!
magma:Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
Analytic order of Ш: |
Шan |
= |
1
(exact)
|
sage:E.sha().an_numerical()
magma:MordellWeilShaInformation(E);
|
1.488307069≈L(E,1)=#E(Q)tor2#Ш(E/Q)⋅ΩE⋅Reg(E/Q)⋅∏pcp≈121⋅0.248051⋅1.000000⋅6≈1.488307069
sage:# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve([0, 0, 0, -138915, -19059138]); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
magma:/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve([0, 0, 0, -138915, -19059138]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
95256.2.a.q
q+3q11+q13−q17−4q19+O(q20)
sage:E.q_eigenform(20)
gp:\\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
magma:ModularForm(E);
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable.
There
are 3 primes p
of bad reduction:
sage:E.local_data()
gp:ellglobalred(E)[5]
magma:[LocalInformation(E,p) : p in BadPrimes(E)];
oscar:[(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ-adic Galois representation has maximal image
for all primes ℓ.
sage:rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma:[GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage:gens = [[1, 1, 167, 0], [1, 2, 0, 1], [113, 2, 113, 3], [1, 0, 2, 1], [85, 2, 85, 3], [167, 2, 166, 3], [127, 2, 0, 1], [73, 2, 73, 3]]
GL(2,Integers(168)).subgroup(gens)
magma:Gens := [[1, 1, 167, 0], [1, 2, 0, 1], [113, 2, 113, 3], [1, 0, 2, 1], [85, 2, 85, 3], [167, 2, 166, 3], [127, 2, 0, 1], [73, 2, 73, 3]];
sub<GL(2,Integers(168))|Gens>;
The image H:=ρE(Gal(Q/Q)) of the adelic Galois representation has
level 168=23⋅3⋅7, index 2, genus 0, and generators
(116710),(1021),(11311323),(1201),(858523),(16716623),(127021),(737323).
The torsion field K:=Q(E[168]) is a degree-74317824 Galois extension of Q with Gal(K/Q) isomorphic to the projection of H to GL2(Z/168Z).
The table below list all primes ℓ for which the Serre invariants associated to the mod-ℓ Galois representation are exceptional.
ℓ |
Reduction type |
Serre weight |
Serre conductor |
2 |
additive |
4 |
1701=35⋅7 |
3 |
additive |
8 |
28=22⋅7 |
7 |
additive |
14 |
1944=23⋅35 |
gp:ellisomat(E)
This curve has no rational isogenies. Its isogeny class 95256.q
consists of this curve only.
The minimal quadratic twist of this elliptic curve is
95256.n1, its twist by 21.
The number fields K of degree less than 24 such that
E(K)tors is strictly larger than E(Q)tors
(which is trivial)
are as follows:
[K:Q] |
K |
E(K)tors |
Base change curve |
3 |
3.3.13608.1 |
Z/2Z |
not in database
|
6 |
6.6.31109847552.1 |
Z/2Z⊕Z/2Z |
not in database
|
8 |
8.2.21341355420672.9 |
Z/3Z |
not in database
|
12 |
deg 12 |
Z/4Z |
not in database
|
We only show fields where the torsion growth is primitive.
For fields not in the database, click on the degree shown to reveal the defining polynomial.
An entry - indicates that the invariants are not computed because the reduction is additive.
p-adic regulators
All p-adic regulators are identically 1 since the rank is 0.