| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 54150.f1 |
54150d1 |
54150.f |
54150d |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 19^{2} \) |
\( - 2 \cdot 3^{4} \cdot 5^{2} \cdot 19^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1.264606632$ |
$1$ |
|
$0$ |
$164160$ |
$1.334135$ |
$95/162$ |
$1.32287$ |
$3.60717$ |
$[1, 1, 0, 715, 399255]$ |
\(y^2+xy=x^3+x^2+715x+399255\) |
8.2.0.a.1 |
$[(239/2, 6259/2)]$ |
| 54150.m1 |
54150l1 |
54150.m |
54150l |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 19^{2} \) |
\( - 2 \cdot 3^{4} \cdot 5^{8} \cdot 19^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1.340373477$ |
$1$ |
|
$2$ |
$43200$ |
$0.666636$ |
$95/162$ |
$1.32287$ |
$2.87227$ |
$[1, 1, 0, 50, -7250]$ |
\(y^2+xy=x^3+x^2+50x-7250\) |
8.2.0.a.1 |
$[(85, 745)]$ |
| 54150.ck1 |
54150cp1 |
54150.ck |
54150cp |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 19^{2} \) |
\( - 2 \cdot 3^{4} \cdot 5^{2} \cdot 19^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$8640$ |
$-0.138084$ |
$95/162$ |
$1.32287$ |
$1.98630$ |
$[1, 0, 0, 2, -58]$ |
\(y^2+xy=x^3+2x-58\) |
8.2.0.a.1 |
$[ ]$ |
| 54150.ct1 |
54150cu1 |
54150.ct |
54150cu |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 19^{2} \) |
\( - 2 \cdot 3^{4} \cdot 5^{8} \cdot 19^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$820800$ |
$2.138855$ |
$95/162$ |
$1.32287$ |
$4.49314$ |
$[1, 0, 0, 17862, 49871142]$ |
\(y^2+xy=x^3+17862x+49871142\) |
8.2.0.a.1 |
$[ ]$ |
| 162450.j1 |
162450dh1 |
162450.j |
162450dh |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19^{2} \) |
\( - 2 \cdot 3^{10} \cdot 5^{2} \cdot 19^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$0.732627599$ |
$1$ |
|
$4$ |
$69120$ |
$0.411222$ |
$95/162$ |
$1.32287$ |
$2.35382$ |
$[1, -1, 0, 18, 1566]$ |
\(y^2+xy=x^3-x^2+18x+1566\) |
8.2.0.a.1 |
$[(3, 39)]$ |
| 162450.bo1 |
162450cr1 |
162450.bo |
162450cr |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19^{2} \) |
\( - 2 \cdot 3^{10} \cdot 5^{8} \cdot 19^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$5.486965083$ |
$1$ |
|
$0$ |
$6566400$ |
$2.688160$ |
$95/162$ |
$1.32287$ |
$4.63111$ |
$[1, -1, 0, 160758, -1346520834]$ |
\(y^2+xy=x^3-x^2+160758x-1346520834\) |
8.2.0.a.1 |
$[(91971/5, 27446679/5)]$ |
| 162450.cz1 |
162450s1 |
162450.cz |
162450s |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19^{2} \) |
\( - 2 \cdot 3^{10} \cdot 5^{2} \cdot 19^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$4.443204455$ |
$1$ |
|
$0$ |
$1313280$ |
$1.883442$ |
$95/162$ |
$1.32287$ |
$3.82627$ |
$[1, -1, 1, 6430, -10773453]$ |
\(y^2+xy+y=x^3-x^2+6430x-10773453\) |
8.2.0.a.1 |
$[(38267/2, 7447425/2)]$ |
| 162450.eh1 |
162450i1 |
162450.eh |
162450i |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19^{2} \) |
\( - 2 \cdot 3^{10} \cdot 5^{8} \cdot 19^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$5.268424338$ |
$1$ |
|
$0$ |
$345600$ |
$1.215940$ |
$95/162$ |
$1.32287$ |
$3.15866$ |
$[1, -1, 1, 445, 196197]$ |
\(y^2+xy+y=x^3-x^2+445x+196197\) |
8.2.0.a.1 |
$[(1595/2, 62229/2)]$ |
| 433200.ba1 |
433200ba1 |
433200.ba |
433200ba |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 19^{2} \) |
\( - 2^{13} \cdot 3^{4} \cdot 5^{8} \cdot 19^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$5.943512207$ |
$1$ |
|
$2$ |
$19699200$ |
$2.832001$ |
$95/162$ |
$1.32287$ |
$4.41413$ |
$[0, -1, 0, 285792, -3191753088]$ |
\(y^2=x^3-x^2+285792x-3191753088\) |
8.2.0.a.1 |
$[(18642, 2545650)]$ |
| 433200.dy1 |
433200dy1 |
433200.dy |
433200dy |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 19^{2} \) |
\( - 2^{13} \cdot 3^{4} \cdot 5^{2} \cdot 19^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1.473238311$ |
$1$ |
|
$4$ |
$207360$ |
$0.555063$ |
$95/162$ |
$1.32287$ |
$2.30893$ |
$[0, -1, 0, 32, 3712]$ |
\(y^2=x^3-x^2+32x+3712\) |
8.2.0.a.1 |
$[(-14, 18)]$ |
| 433200.gh1 |
433200gh1 |
433200.gh |
433200gh |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 19^{2} \) |
\( - 2^{13} \cdot 3^{4} \cdot 5^{8} \cdot 19^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$0.305182325$ |
$1$ |
|
$8$ |
$1036800$ |
$1.359783$ |
$95/162$ |
$1.32287$ |
$3.05295$ |
$[0, 1, 0, 792, 465588]$ |
\(y^2=x^3+x^2+792x+465588\) |
8.2.0.a.1 |
$[(-42, 600)]$ |
| 433200.ji1 |
433200ji1 |
433200.ji |
433200ji |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 19^{2} \) |
\( - 2^{13} \cdot 3^{4} \cdot 5^{2} \cdot 19^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$4.455048280$ |
$1$ |
|
$2$ |
$3939840$ |
$2.027283$ |
$95/162$ |
$1.32287$ |
$3.67011$ |
$[0, 1, 0, 11432, -25529452]$ |
\(y^2=x^3+x^2+11432x-25529452\) |
8.2.0.a.1 |
$[(734, 19464)]$ |