| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 24168.d1 |
24168e1 |
24168.d |
24168e |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 19 \cdot 53 \) |
\( 2^{10} \cdot 3^{7} \cdot 19 \cdot 53^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6042$ |
$2$ |
$0$ |
$2.828654458$ |
$1$ |
|
$2$ |
$77952$ |
$1.511469$ |
$91781131747461124/6186285981$ |
$0.93946$ |
$4.55669$ |
$[0, -1, 0, -94720, -11188292]$ |
\(y^2=x^3-x^2-94720x-11188292\) |
6042.2.0.? |
$[(498, 8056)]$ |
$1$ |
| 48336.bi1 |
48336r1 |
48336.bi |
48336r |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 19 \cdot 53 \) |
\( 2^{10} \cdot 3^{7} \cdot 19 \cdot 53^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6042$ |
$2$ |
$0$ |
$0.144346618$ |
$1$ |
|
$8$ |
$155904$ |
$1.511469$ |
$91781131747461124/6186285981$ |
$0.93946$ |
$4.26386$ |
$[0, 1, 0, -94720, 11188292]$ |
\(y^2=x^3+x^2-94720x+11188292\) |
6042.2.0.? |
$[(32, 2862)]$ |
$1$ |
| 72504.o1 |
72504v1 |
72504.o |
72504v |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 19 \cdot 53 \) |
\( 2^{10} \cdot 3^{13} \cdot 19 \cdot 53^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6042$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$623616$ |
$2.060776$ |
$91781131747461124/6186285981$ |
$0.93946$ |
$4.69837$ |
$[0, 0, 0, -852483, 302936366]$ |
\(y^2=x^3-852483x+302936366\) |
6042.2.0.? |
$[ ]$ |
$1$ |
| 145008.be1 |
145008bv1 |
145008.be |
145008bv |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 19 \cdot 53 \) |
\( 2^{10} \cdot 3^{13} \cdot 19 \cdot 53^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6042$ |
$2$ |
$0$ |
$8.915116206$ |
$1$ |
|
$8$ |
$1247232$ |
$2.060776$ |
$91781131747461124/6186285981$ |
$0.93946$ |
$4.42435$ |
$[0, 0, 0, -852483, -302936366]$ |
\(y^2=x^3-852483x-302936366\) |
6042.2.0.? |
$[(-535, 108), (-531, 104)]$ |
$1$ |
| 193344.v1 |
193344bp1 |
193344.v |
193344bp |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 19 \cdot 53 \) |
\( 2^{16} \cdot 3^{7} \cdot 19 \cdot 53^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6042$ |
$2$ |
$0$ |
$4.302333433$ |
$1$ |
|
$2$ |
$1247232$ |
$1.858042$ |
$91781131747461124/6186285981$ |
$0.93946$ |
$4.11992$ |
$[0, -1, 0, -378881, 89885217]$ |
\(y^2=x^3-x^2-378881x+89885217\) |
6042.2.0.? |
$[(352, 97)]$ |
$1$ |
| 193344.cy1 |
193344cn1 |
193344.cy |
193344cn |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 19 \cdot 53 \) |
\( 2^{16} \cdot 3^{7} \cdot 19 \cdot 53^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6042$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1247232$ |
$1.858042$ |
$91781131747461124/6186285981$ |
$0.93946$ |
$4.11992$ |
$[0, 1, 0, -378881, -89885217]$ |
\(y^2=x^3+x^2-378881x-89885217\) |
6042.2.0.? |
$[ ]$ |
$1$ |
| 459192.be1 |
459192be1 |
459192.be |
459192be |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 19^{2} \cdot 53 \) |
\( 2^{10} \cdot 3^{7} \cdot 19^{7} \cdot 53^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6042$ |
$2$ |
$0$ |
$2.316070748$ |
$1$ |
|
$10$ |
$28062720$ |
$2.983688$ |
$91781131747461124/6186285981$ |
$0.93946$ |
$4.88266$ |
$[0, 1, 0, -34194040, 76945658816]$ |
\(y^2=x^3+x^2-34194040x+76945658816\) |
6042.2.0.? |
$[(3464, 8664), (3179, 19494)]$ |
$1$ |