| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 13260.i1 |
13260l1 |
13260.i |
13260l |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{4} \cdot 3^{5} \cdot 5^{3} \cdot 13^{4} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$0.127191466$ |
$1$ |
|
$10$ |
$14400$ |
$0.861525$ |
$88184857856/14748186375$ |
$0.93050$ |
$3.54366$ |
$[0, 1, 0, 234, 23409]$ |
\(y^2=x^3+x^2+234x+23409\) |
510.2.0.? |
$[(-18, 117)]$ |
| 39780.u1 |
39780z1 |
39780.u |
39780z |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{4} \cdot 3^{11} \cdot 5^{3} \cdot 13^{4} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$0.949389772$ |
$1$ |
|
$2$ |
$115200$ |
$1.410830$ |
$88184857856/14748186375$ |
$0.93050$ |
$3.79846$ |
$[0, 0, 0, 2103, -629939]$ |
\(y^2=x^3+2103x-629939\) |
510.2.0.? |
$[(92, 585)]$ |
| 53040.i1 |
53040bo1 |
53040.i |
53040bo |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{4} \cdot 3^{5} \cdot 5^{3} \cdot 13^{4} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$57600$ |
$0.861525$ |
$88184857856/14748186375$ |
$0.93050$ |
$3.09209$ |
$[0, -1, 0, 234, -23409]$ |
\(y^2=x^3-x^2+234x-23409\) |
510.2.0.? |
$[ ]$ |
| 66300.l1 |
66300a1 |
66300.l |
66300a |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 13 \cdot 17 \) |
\( - 2^{4} \cdot 3^{5} \cdot 5^{9} \cdot 13^{4} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$345600$ |
$1.666243$ |
$88184857856/14748186375$ |
$0.93050$ |
$3.89975$ |
$[0, -1, 0, 5842, 2914437]$ |
\(y^2=x^3-x^2+5842x+2914437\) |
510.2.0.? |
$[ ]$ |
| 159120.dk1 |
159120n1 |
159120.dk |
159120n |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{4} \cdot 3^{11} \cdot 5^{3} \cdot 13^{4} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$0.415799263$ |
$1$ |
|
$2$ |
$460800$ |
$1.410830$ |
$88184857856/14748186375$ |
$0.93050$ |
$3.35881$ |
$[0, 0, 0, 2103, 629939]$ |
\(y^2=x^3+2103x+629939\) |
510.2.0.? |
$[(298, 5265)]$ |
| 172380.bg1 |
172380g1 |
172380.bg |
172380g |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13^{2} \cdot 17 \) |
\( - 2^{4} \cdot 3^{5} \cdot 5^{3} \cdot 13^{10} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1.456816967$ |
$1$ |
|
$2$ |
$2419200$ |
$2.143997$ |
$88184857856/14748186375$ |
$0.93050$ |
$4.06619$ |
$[0, 1, 0, 39490, 51271533]$ |
\(y^2=x^3+x^2+39490x+51271533\) |
510.2.0.? |
$[(121, 7605)]$ |
| 198900.bb1 |
198900bm1 |
198900.bb |
198900bm |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 17 \) |
\( - 2^{4} \cdot 3^{11} \cdot 5^{9} \cdot 13^{4} \cdot 17 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1.102749602$ |
$1$ |
|
$16$ |
$2764800$ |
$2.215549$ |
$88184857856/14748186375$ |
$0.93050$ |
$4.08887$ |
$[0, 0, 0, 52575, -78742375]$ |
\(y^2=x^3+52575x-78742375\) |
510.2.0.? |
$[(535, 10125), (785, 21125)]$ |
| 212160.de1 |
212160gr1 |
212160.de |
212160gr |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{10} \cdot 3^{5} \cdot 5^{3} \cdot 13^{4} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1.979414135$ |
$1$ |
|
$2$ |
$460800$ |
$1.208097$ |
$88184857856/14748186375$ |
$0.93050$ |
$3.08168$ |
$[0, -1, 0, 935, 186337]$ |
\(y^2=x^3-x^2+935x+186337\) |
510.2.0.? |
$[(-48, 169)]$ |
| 212160.gn1 |
212160m1 |
212160.gn |
212160m |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{10} \cdot 3^{5} \cdot 5^{3} \cdot 13^{4} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1.089767020$ |
$1$ |
|
$2$ |
$460800$ |
$1.208097$ |
$88184857856/14748186375$ |
$0.93050$ |
$3.08168$ |
$[0, 1, 0, 935, -186337]$ |
\(y^2=x^3+x^2+935x-186337\) |
510.2.0.? |
$[(386, 7605)]$ |
| 225420.o1 |
225420bb1 |
225420.o |
225420bb |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{5} \cdot 5^{3} \cdot 13^{4} \cdot 17^{7} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$0.468393384$ |
$1$ |
|
$18$ |
$4147200$ |
$2.278130$ |
$88184857856/14748186375$ |
$0.93050$ |
$4.10828$ |
$[0, -1, 0, 67530, 114603057]$ |
\(y^2=x^3-x^2+67530x+114603057\) |
510.2.0.? |
$[(584, 18785), (142, 11271)]$ |
| 265200.ft1 |
265200ft1 |
265200.ft |
265200ft |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13 \cdot 17 \) |
\( - 2^{4} \cdot 3^{5} \cdot 5^{9} \cdot 13^{4} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$2.281788584$ |
$1$ |
|
$2$ |
$1382400$ |
$1.666243$ |
$88184857856/14748186375$ |
$0.93050$ |
$3.46685$ |
$[0, 1, 0, 5842, -2914437]$ |
\(y^2=x^3+x^2+5842x-2914437\) |
510.2.0.? |
$[(543, 12675)]$ |