| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 6510.r5 |
6510r1 |
6510.r |
6510r |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \) |
\( - 2^{8} \cdot 3^{4} \cdot 5^{4} \cdot 7^{8} \cdot 31 \) |
$0$ |
$\Z/8\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.48.0.159 |
2B |
$3472$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$7$ |
$40960$ |
$1.631878$ |
$870215264126076959/2316066449760000$ |
$0.97694$ |
$4.84999$ |
$[1, 1, 1, 19890, 2056587]$ |
\(y^2+xy+y=x^3+x^2+19890x+2056587\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 8.48.0-8.bb.1.1, 62.6.0.b.1, 112.96.0.?, $\ldots$ |
$[ ]$ |
| 19530.p5 |
19530m1 |
19530.p |
19530m |
$6$ |
$8$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 31 \) |
\( - 2^{8} \cdot 3^{10} \cdot 5^{4} \cdot 7^{8} \cdot 31 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.88 |
2B |
$10416$ |
$192$ |
$1$ |
$1.823958900$ |
$1$ |
|
$5$ |
$327680$ |
$2.181183$ |
$870215264126076959/2316066449760000$ |
$0.97694$ |
$4.97787$ |
$[1, -1, 0, 179010, -55348844]$ |
\(y^2+xy=x^3-x^2+179010x-55348844\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.1, 12.12.0-4.c.1.2, 24.48.0-8.bb.1.2, $\ldots$ |
$[(348, 6826)]$ |
| 32550.s5 |
32550t1 |
32550.s |
32550t |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 31 \) |
\( - 2^{8} \cdot 3^{4} \cdot 5^{10} \cdot 7^{8} \cdot 31 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.88 |
2B |
$17360$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$983040$ |
$2.436596$ |
$870215264126076959/2316066449760000$ |
$0.97694$ |
$5.02812$ |
$[1, 0, 1, 497249, 256078898]$ |
\(y^2+xy+y=x^3+497249x+256078898\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.1, 20.12.0-4.c.1.2, 40.48.0-8.bb.1.7, $\ldots$ |
$[ ]$ |
| 45570.cr5 |
45570da1 |
45570.cr |
45570da |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 31 \) |
\( - 2^{8} \cdot 3^{4} \cdot 5^{4} \cdot 7^{14} \cdot 31 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.106 |
2B |
$3472$ |
$192$ |
$1$ |
$1.821160804$ |
$1$ |
|
$7$ |
$1966080$ |
$2.604832$ |
$870215264126076959/2316066449760000$ |
$0.97694$ |
$5.05860$ |
$[1, 0, 0, 974609, -702485575]$ |
\(y^2+xy=x^3+974609x-702485575\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.1, 16.48.0-8.bb.1.4, 28.12.0-4.c.1.2, $\ldots$ |
$[(578, 7061)]$ |
| 52080.bw5 |
52080bz1 |
52080.bw |
52080bz |
$6$ |
$8$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 31 \) |
\( - 2^{20} \cdot 3^{4} \cdot 5^{4} \cdot 7^{8} \cdot 31 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.176 |
2B |
$3472$ |
$192$ |
$1$ |
$2.103017358$ |
$1$ |
|
$5$ |
$983040$ |
$2.325024$ |
$870215264126076959/2316066449760000$ |
$0.97694$ |
$4.68724$ |
$[0, 1, 0, 318240, -130985100]$ |
\(y^2=x^3+x^2+318240x-130985100\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 8.48.0-8.bb.1.3, 62.6.0.b.1, 112.96.0.?, $\ldots$ |
$[(570, 15360)]$ |
| 97650.df5 |
97650da1 |
97650.df |
97650da |
$6$ |
$8$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 31 \) |
\( - 2^{8} \cdot 3^{10} \cdot 5^{10} \cdot 7^{8} \cdot 31 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.88 |
2B |
$52080$ |
$192$ |
$1$ |
$5.666064369$ |
$1$ |
|
$3$ |
$7864320$ |
$2.985901$ |
$870215264126076959/2316066449760000$ |
$0.97694$ |
$5.12105$ |
$[1, -1, 1, 4475245, -6914130253]$ |
\(y^2+xy+y=x^3-x^2+4475245x-6914130253\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.1, 60.12.0-4.c.1.2, 62.6.0.b.1, $\ldots$ |
$[(10651/3, 151510/3)]$ |
| 136710.de5 |
136710dv1 |
136710.de |
136710dv |
$6$ |
$8$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 31 \) |
\( - 2^{8} \cdot 3^{10} \cdot 5^{4} \cdot 7^{14} \cdot 31 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.88 |
2B |
$10416$ |
$192$ |
$1$ |
$5.099770471$ |
$1$ |
|
$3$ |
$15728640$ |
$3.154140$ |
$870215264126076959/2316066449760000$ |
$0.97694$ |
$5.14606$ |
$[1, -1, 0, 8771481, 18967110525]$ |
\(y^2+xy=x^3-x^2+8771481x+18967110525\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.1, 48.48.0-8.bb.1.4, 62.6.0.b.1, $\ldots$ |
$[(7566, 716217)]$ |
| 156240.d5 |
156240bx1 |
156240.d |
156240bx |
$6$ |
$8$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 31 \) |
\( - 2^{20} \cdot 3^{10} \cdot 5^{4} \cdot 7^{8} \cdot 31 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.88 |
2B |
$10416$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$7864320$ |
$2.874332$ |
$870215264126076959/2316066449760000$ |
$0.97694$ |
$4.80784$ |
$[0, 0, 0, 2864157, 3539461858]$ |
\(y^2=x^3+2864157x+3539461858\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.1, 12.12.0-4.c.1.1, 24.48.0-8.bb.1.1, $\ldots$ |
$[ ]$ |
| 201810.cu5 |
201810d1 |
201810.cu |
201810d |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31^{2} \) |
\( - 2^{8} \cdot 3^{4} \cdot 5^{4} \cdot 7^{8} \cdot 31^{7} \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.165 |
2B |
$3472$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$3$ |
$39321600$ |
$3.348869$ |
$870215264126076959/2316066449760000$ |
$0.97694$ |
$5.17329$ |
$[1, 0, 0, 19114270, -61019303100]$ |
\(y^2+xy=x^3+19114270x-61019303100\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 8.48.0-8.bb.1.8, 62.6.0.b.1, 112.96.0.?, $\ldots$ |
$[ ]$ |
| 208320.e5 |
208320cx1 |
208320.e |
208320cx |
$6$ |
$8$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 31 \) |
\( - 2^{26} \cdot 3^{4} \cdot 5^{4} \cdot 7^{8} \cdot 31 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.215 |
2B |
$3472$ |
$192$ |
$1$ |
$6.099616212$ |
$1$ |
|
$1$ |
$7864320$ |
$2.671597$ |
$870215264126076959/2316066449760000$ |
$0.97694$ |
$4.49625$ |
$[0, -1, 0, 1272959, -1049153759]$ |
\(y^2=x^3-x^2+1272959x-1049153759\) |
2.3.0.a.1, 4.6.0.c.1, 8.48.0-8.bb.1.5, 62.6.0.b.1, 112.96.0.?, $\ldots$ |
$[(178789/7, 78336000/7)]$ |
| 208320.em5 |
208320ef1 |
208320.em |
208320ef |
$6$ |
$8$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 31 \) |
\( - 2^{26} \cdot 3^{4} \cdot 5^{4} \cdot 7^{8} \cdot 31 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.219 |
2B |
$3472$ |
$192$ |
$1$ |
$1.294960545$ |
$1$ |
|
$5$ |
$7864320$ |
$2.671597$ |
$870215264126076959/2316066449760000$ |
$0.97694$ |
$4.49625$ |
$[0, 1, 0, 1272959, 1049153759]$ |
\(y^2=x^3+x^2+1272959x+1049153759\) |
2.3.0.a.1, 4.6.0.c.1, 8.48.0-8.bb.1.7, 62.6.0.b.1, 112.96.0.?, $\ldots$ |
$[(-286, 25725)]$ |
| 227850.j5 |
227850in1 |
227850.j |
227850in |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 31 \) |
\( - 2^{8} \cdot 3^{4} \cdot 5^{10} \cdot 7^{14} \cdot 31 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.88 |
2B |
$17360$ |
$192$ |
$1$ |
$3.835075777$ |
$1$ |
|
$3$ |
$47185920$ |
$3.409550$ |
$870215264126076959/2316066449760000$ |
$0.97694$ |
$5.18142$ |
$[1, 1, 0, 24365225, -87810696875]$ |
\(y^2+xy=x^3+x^2+24365225x-87810696875\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.1, 62.6.0.b.1, 80.48.0.?, $\ldots$ |
$[(21265, 3159055)]$ |
| 260400.dp5 |
260400dp1 |
260400.dp |
260400dp |
$6$ |
$8$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 31 \) |
\( - 2^{20} \cdot 3^{4} \cdot 5^{10} \cdot 7^{8} \cdot 31 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.88 |
2B |
$17360$ |
$192$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$23592960$ |
$3.129745$ |
$870215264126076959/2316066449760000$ |
$0.97694$ |
$4.85667$ |
$[0, -1, 0, 7955992, -16389049488]$ |
\(y^2=x^3-x^2+7955992x-16389049488\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.1, 20.12.0-4.c.1.1, 40.48.0-8.bb.1.8, $\ldots$ |
$[ ]$ |
| 364560.bz5 |
364560bz1 |
364560.bz |
364560bz |
$6$ |
$8$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 31 \) |
\( - 2^{20} \cdot 3^{4} \cdot 5^{4} \cdot 7^{14} \cdot 31 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.104 |
2B |
$3472$ |
$192$ |
$1$ |
$8.348902483$ |
$1$ |
|
$3$ |
$47185920$ |
$3.297981$ |
$870215264126076959/2316066449760000$ |
$0.97694$ |
$4.88671$ |
$[0, -1, 0, 15593744, 44959076800]$ |
\(y^2=x^3-x^2+15593744x+44959076800\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.1, 16.48.0-8.bb.1.2, 28.12.0-4.c.1.1, $\ldots$ |
$[(1011688, 1017590400)]$ |