Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
76296.e1 |
76296p1 |
76296.e |
76296p |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 11 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{8} \cdot 11^{5} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$22$ |
$2$ |
$0$ |
$0.455367613$ |
$1$ |
|
$4$ |
$230400$ |
$1.351946$ |
$860492463104/1056655611$ |
$0.97677$ |
$3.45189$ |
$[0, -1, 0, 8319, 306549]$ |
\(y^2=x^3-x^2+8319x+306549\) |
22.2.0.a.1 |
$[(123, 1782)]$ |
76296.s1 |
76296s1 |
76296.s |
76296s |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 11 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{8} \cdot 11^{5} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$22$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3916800$ |
$2.768551$ |
$860492463104/1056655611$ |
$0.97677$ |
$4.96396$ |
$[0, 1, 0, 2404095, 1520499987]$ |
\(y^2=x^3+x^2+2404095x+1520499987\) |
22.2.0.a.1 |
$[ ]$ |
152592.w1 |
152592df1 |
152592.w |
152592df |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 11 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{8} \cdot 11^{5} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$22$ |
$2$ |
$0$ |
$2.447565879$ |
$1$ |
|
$2$ |
$7833600$ |
$2.768551$ |
$860492463104/1056655611$ |
$0.97677$ |
$4.67568$ |
$[0, -1, 0, 2404095, -1520499987]$ |
\(y^2=x^3-x^2+2404095x-1520499987\) |
22.2.0.a.1 |
$[(588, 9801)]$ |
152592.cf1 |
152592cr1 |
152592.cf |
152592cr |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 11 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{8} \cdot 11^{5} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$22$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$460800$ |
$1.351946$ |
$860492463104/1056655611$ |
$0.97677$ |
$3.25142$ |
$[0, 1, 0, 8319, -306549]$ |
\(y^2=x^3+x^2+8319x-306549\) |
22.2.0.a.1 |
$[ ]$ |
228888.z1 |
228888bs1 |
228888.z |
228888bs |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 11 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{14} \cdot 11^{5} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$22$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$31334400$ |
$3.317860$ |
$860492463104/1056655611$ |
$0.97677$ |
$5.05619$ |
$[0, 0, 0, 21636852, -41031862796]$ |
\(y^2=x^3+21636852x-41031862796\) |
22.2.0.a.1 |
$[ ]$ |
228888.bp1 |
228888bx1 |
228888.bp |
228888bx |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 11 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{14} \cdot 11^{5} \cdot 17^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$22$ |
$2$ |
$0$ |
$4.373030167$ |
$1$ |
|
$10$ |
$1843200$ |
$1.901253$ |
$860492463104/1056655611$ |
$0.97677$ |
$3.67872$ |
$[0, 0, 0, 74868, -8351692]$ |
\(y^2=x^3+74868x-8351692\) |
22.2.0.a.1 |
$[(118, 1458), (604, 16038)]$ |
457776.ca1 |
457776ca1 |
457776.ca |
457776ca |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 11 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{14} \cdot 11^{5} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$22$ |
$2$ |
$0$ |
$19.04338662$ |
$1$ |
|
$0$ |
$62668800$ |
$3.317860$ |
$860492463104/1056655611$ |
$0.97677$ |
$4.78730$ |
$[0, 0, 0, 21636852, 41031862796]$ |
\(y^2=x^3+21636852x+41031862796\) |
22.2.0.a.1 |
$[(-835759007/946, 119758214923983/946)]$ |
457776.ed1 |
457776ed1 |
457776.ed |
457776ed |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 11 \cdot 17^{2} \) |
\( - 2^{8} \cdot 3^{14} \cdot 11^{5} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$22$ |
$2$ |
$0$ |
$2.855880468$ |
$1$ |
|
$2$ |
$3686400$ |
$1.901253$ |
$860492463104/1056655611$ |
$0.97677$ |
$3.48309$ |
$[0, 0, 0, 74868, 8351692]$ |
\(y^2=x^3+74868x+8351692\) |
22.2.0.a.1 |
$[(3041, 168399)]$ |