| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 34680.n1 |
34680k1 |
34680.n |
34680k |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{3} \cdot 17^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$0.200368059$ |
$1$ |
|
$22$ |
$13824$ |
$0.434082$ |
$85525504/10125$ |
$1.07081$ |
$2.81961$ |
$[0, -1, 0, -385, 2725]$ |
\(y^2=x^3-x^2-385x+2725\) |
10.2.0.a.1 |
$[(25, 90), (5, 30)]$ |
| 34680.bn1 |
34680v1 |
34680.bn |
34680v |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{3} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$0.389862498$ |
$1$ |
|
$6$ |
$235008$ |
$1.850689$ |
$85525504/10125$ |
$1.07081$ |
$4.44572$ |
$[0, 1, 0, -111361, 12719939]$ |
\(y^2=x^3+x^2-111361x+12719939\) |
10.2.0.a.1 |
$[(-193, 5202)]$ |
| 69360.h1 |
69360m1 |
69360.h |
69360m |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{3} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$470016$ |
$1.850689$ |
$85525504/10125$ |
$1.07081$ |
$4.16928$ |
$[0, -1, 0, -111361, -12719939]$ |
\(y^2=x^3-x^2-111361x-12719939\) |
10.2.0.a.1 |
$[ ]$ |
| 69360.dt1 |
69360bo1 |
69360.dt |
69360bo |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{3} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$0.741959585$ |
$1$ |
|
$2$ |
$27648$ |
$0.434082$ |
$85525504/10125$ |
$1.07081$ |
$2.64428$ |
$[0, 1, 0, -385, -2725]$ |
\(y^2=x^3+x^2-385x-2725\) |
10.2.0.a.1 |
$[(-10, 15)]$ |
| 104040.h1 |
104040cf1 |
104040.h |
104040cf |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{10} \cdot 5^{3} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$1.960985513$ |
$1$ |
|
$2$ |
$110592$ |
$0.983388$ |
$85525504/10125$ |
$1.07081$ |
$3.12205$ |
$[0, 0, 0, -3468, -70108]$ |
\(y^2=x^3-3468x-70108\) |
10.2.0.a.1 |
$[(-32, 90)]$ |
| 104040.cs1 |
104040db1 |
104040.cs |
104040db |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{10} \cdot 5^{3} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$3.762521557$ |
$1$ |
|
$2$ |
$1880064$ |
$2.399994$ |
$85525504/10125$ |
$1.07081$ |
$4.59353$ |
$[0, 0, 0, -1002252, -344440604]$ |
\(y^2=x^3-1002252x-344440604\) |
10.2.0.a.1 |
$[(-688, 4410)]$ |
| 173400.p1 |
173400by1 |
173400.p |
173400by |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{9} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$4.892019402$ |
$1$ |
|
$2$ |
$5640192$ |
$2.655407$ |
$85525504/10125$ |
$1.07081$ |
$4.65309$ |
$[0, -1, 0, -2784033, 1595560437]$ |
\(y^2=x^3-x^2-2784033x+1595560437\) |
10.2.0.a.1 |
$[(-468, 52875)]$ |
| 173400.ee1 |
173400y1 |
173400.ee |
173400y |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{9} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$0.428450406$ |
$1$ |
|
$4$ |
$331776$ |
$1.238802$ |
$85525504/10125$ |
$1.07081$ |
$3.24392$ |
$[0, 1, 0, -9633, 321363]$ |
\(y^2=x^3+x^2-9633x+321363\) |
10.2.0.a.1 |
$[(-27, 750)]$ |
| 208080.ct1 |
208080gp1 |
208080.ct |
208080gp |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{10} \cdot 5^{3} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$221184$ |
$0.983388$ |
$85525504/10125$ |
$1.07081$ |
$2.94533$ |
$[0, 0, 0, -3468, 70108]$ |
\(y^2=x^3-3468x+70108\) |
10.2.0.a.1 |
$[ ]$ |
| 208080.es1 |
208080ep1 |
208080.es |
208080ep |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{10} \cdot 5^{3} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3760128$ |
$2.399994$ |
$85525504/10125$ |
$1.07081$ |
$4.33352$ |
$[0, 0, 0, -1002252, 344440604]$ |
\(y^2=x^3-1002252x+344440604\) |
10.2.0.a.1 |
$[ ]$ |
| 277440.bu1 |
277440bu1 |
277440.bu |
277440bu |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( 2^{14} \cdot 3^{4} \cdot 5^{3} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$221184$ |
$0.780656$ |
$85525504/10125$ |
$1.07081$ |
$2.68362$ |
$[0, -1, 0, -1541, -20259]$ |
\(y^2=x^3-x^2-1541x-20259\) |
10.2.0.a.1 |
$[ ]$ |
| 277440.ef1 |
277440ef1 |
277440.ef |
277440ef |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( 2^{14} \cdot 3^{4} \cdot 5^{3} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$1.599991153$ |
$1$ |
|
$0$ |
$3760128$ |
$2.197262$ |
$85525504/10125$ |
$1.07081$ |
$4.03995$ |
$[0, -1, 0, -445445, 102204957]$ |
\(y^2=x^3-x^2-445445x+102204957\) |
10.2.0.a.1 |
$[(1061/2, 13005/2)]$ |
| 277440.fl1 |
277440fl1 |
277440.fl |
277440fl |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( 2^{14} \cdot 3^{4} \cdot 5^{3} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$221184$ |
$0.780656$ |
$85525504/10125$ |
$1.07081$ |
$2.68362$ |
$[0, 1, 0, -1541, 20259]$ |
\(y^2=x^3+x^2-1541x+20259\) |
10.2.0.a.1 |
$[ ]$ |
| 277440.hv1 |
277440hv1 |
277440.hv |
277440hv |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 17^{2} \) |
\( 2^{14} \cdot 3^{4} \cdot 5^{3} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$1.629722392$ |
$1$ |
|
$2$ |
$3760128$ |
$2.197262$ |
$85525504/10125$ |
$1.07081$ |
$4.03995$ |
$[0, 1, 0, -445445, -102204957]$ |
\(y^2=x^3+x^2-445445x-102204957\) |
10.2.0.a.1 |
$[(-482, 867)]$ |
| 346800.bs1 |
346800bs1 |
346800.bs |
346800bs |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{9} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$1.774974182$ |
$1$ |
|
$0$ |
$663552$ |
$1.238802$ |
$85525504/10125$ |
$1.07081$ |
$3.06766$ |
$[0, -1, 0, -9633, -321363]$ |
\(y^2=x^3-x^2-9633x-321363\) |
10.2.0.a.1 |
$[(-267/2, 1125/2)]$ |
| 346800.kf1 |
346800kf1 |
346800.kf |
346800kf |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{9} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10$ |
$2$ |
$0$ |
$13.15637509$ |
$1$ |
|
$0$ |
$11280384$ |
$2.655407$ |
$85525504/10125$ |
$1.07081$ |
$4.40025$ |
$[0, 1, 0, -2784033, -1595560437]$ |
\(y^2=x^3+x^2-2784033x-1595560437\) |
10.2.0.a.1 |
$[(-3674562/71, 2454583125/71)]$ |