| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 158700.c1 |
158700t1 |
158700.c |
158700t |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 23^{2} \) |
\( - 2^{8} \cdot 3^{2} \cdot 5^{9} \cdot 23^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$230$ |
$2$ |
$0$ |
$1.276167505$ |
$1$ |
|
$14$ |
$322560$ |
$1.322697$ |
$8192/9$ |
$0.84034$ |
$3.21071$ |
$[0, -1, 0, 7667, -247463]$ |
\(y^2=x^3-x^2+7667x-247463\) |
230.2.0.? |
$[(67, 750), (192, 2875)]$ |
$1$ |
| 158700.n1 |
158700w1 |
158700.n |
158700w |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 23^{2} \) |
\( - 2^{8} \cdot 3^{2} \cdot 5^{9} \cdot 23^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$230$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7418880$ |
$2.890446$ |
$8192/9$ |
$0.84034$ |
$4.78176$ |
$[0, -1, 0, 4055667, 2978436537]$ |
\(y^2=x^3-x^2+4055667x+2978436537\) |
230.2.0.? |
$[ ]$ |
$1$ |
| 158700.x1 |
158700b1 |
158700.x |
158700b |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 23^{2} \) |
\( - 2^{8} \cdot 3^{2} \cdot 5^{3} \cdot 23^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$230$ |
$2$ |
$0$ |
$4.762291897$ |
$1$ |
|
$0$ |
$1483776$ |
$2.085724$ |
$8192/9$ |
$0.84034$ |
$3.97535$ |
$[0, 1, 0, 162227, 23892383]$ |
\(y^2=x^3+x^2+162227x+23892383\) |
230.2.0.? |
$[(9682/7, 2737575/7)]$ |
$1$ |
| 158700.bd1 |
158700e1 |
158700.bd |
158700e |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 23^{2} \) |
\( - 2^{8} \cdot 3^{2} \cdot 5^{3} \cdot 23^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$230$ |
$2$ |
$0$ |
$1.599243568$ |
$1$ |
|
$0$ |
$64512$ |
$0.517978$ |
$8192/9$ |
$0.84034$ |
$2.40430$ |
$[0, 1, 0, 307, -1857]$ |
\(y^2=x^3+x^2+307x-1857\) |
230.2.0.? |
$[(37/2, 345/2)]$ |
$1$ |
| 476100.q1 |
476100q1 |
476100.q |
476100q |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 23^{2} \) |
\( - 2^{8} \cdot 3^{8} \cdot 5^{3} \cdot 23^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$230$ |
$2$ |
$0$ |
$1.792665506$ |
$1$ |
|
$4$ |
$11870208$ |
$2.635033$ |
$8192/9$ |
$0.84034$ |
$4.14549$ |
$[0, 0, 0, 1460040, -643634300]$ |
\(y^2=x^3+1460040x-643634300\) |
230.2.0.? |
$[(10580, 1095030)]$ |
$1$ |
| 476100.v1 |
476100v1 |
476100.v |
476100v |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 23^{2} \) |
\( - 2^{8} \cdot 3^{8} \cdot 5^{9} \cdot 23^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$230$ |
$2$ |
$0$ |
$3.439423872$ |
$1$ |
|
$0$ |
$2580480$ |
$1.872004$ |
$8192/9$ |
$0.84034$ |
$3.44511$ |
$[0, 0, 0, 69000, 6612500]$ |
\(y^2=x^3+69000x+6612500\) |
230.2.0.? |
$[(-575/4, 129375/4)]$ |
$1$ |
| 476100.ct1 |
476100ct1 |
476100.ct |
476100ct |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 23^{2} \) |
\( - 2^{8} \cdot 3^{8} \cdot 5^{9} \cdot 23^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$230$ |
$2$ |
$0$ |
$32.56739676$ |
$1$ |
|
$0$ |
$59351040$ |
$3.439751$ |
$8192/9$ |
$0.84034$ |
$4.88413$ |
$[0, 0, 0, 36501000, -80454287500]$ |
\(y^2=x^3+36501000x-80454287500\) |
230.2.0.? |
$[(54492890333282725/4899501, 13967192930759965236449125/4899501)]$ |
$1$ |
| 476100.cw1 |
476100cw1 |
476100.cw |
476100cw |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 23^{2} \) |
\( - 2^{8} \cdot 3^{8} \cdot 5^{3} \cdot 23^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$230$ |
$2$ |
$0$ |
$0.874677904$ |
$1$ |
|
$4$ |
$516096$ |
$1.067284$ |
$8192/9$ |
$0.84034$ |
$2.70646$ |
$[0, 0, 0, 2760, 52900]$ |
\(y^2=x^3+2760x+52900\) |
230.2.0.? |
$[(0, 230)]$ |
$1$ |