Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
5220.f2 |
5220a1 |
5220.f |
5220a |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 29 \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{2} \cdot 29^{3} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$174$ |
$16$ |
$0$ |
$0.770061669$ |
$1$ |
|
$8$ |
$1152$ |
$0.303957$ |
$813189888/609725$ |
$0.98400$ |
$3.10562$ |
$[0, 0, 0, 147, 373]$ |
\(y^2=x^3+147x+373\) |
3.8.0-3.a.1.2, 174.16.0.? |
$[(-1, 15)]$ |
5220.m2 |
5220d2 |
5220.m |
5220d |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 29 \) |
\( - 2^{4} \cdot 3^{9} \cdot 5^{2} \cdot 29^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$174$ |
$16$ |
$0$ |
$1.808837965$ |
$1$ |
|
$2$ |
$3456$ |
$0.853263$ |
$813189888/609725$ |
$0.98400$ |
$3.87565$ |
$[0, 0, 0, 1323, -10071]$ |
\(y^2=x^3+1323x-10071\) |
3.8.0-3.a.1.1, 174.16.0.? |
$[(48, 405)]$ |
20880.s2 |
20880bg1 |
20880.s |
20880bg |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 29 \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{2} \cdot 29^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$348$ |
$16$ |
$0$ |
$0.445591191$ |
$1$ |
|
$2$ |
$4608$ |
$0.303957$ |
$813189888/609725$ |
$0.98400$ |
$2.67278$ |
$[0, 0, 0, 147, -373]$ |
\(y^2=x^3+147x-373\) |
3.4.0.a.1, 12.8.0-3.a.1.1, 174.8.0.?, 348.16.0.? |
$[(26, 145)]$ |
20880.bx2 |
20880bl2 |
20880.bx |
20880bl |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 29 \) |
\( - 2^{4} \cdot 3^{9} \cdot 5^{2} \cdot 29^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$348$ |
$16$ |
$0$ |
$2.124112541$ |
$1$ |
|
$2$ |
$13824$ |
$0.853263$ |
$813189888/609725$ |
$0.98400$ |
$3.33549$ |
$[0, 0, 0, 1323, 10071]$ |
\(y^2=x^3+1323x+10071\) |
3.4.0.a.1, 12.8.0-3.a.1.2, 174.8.0.?, 348.16.0.? |
$[(6, 135)]$ |
26100.t2 |
26100f1 |
26100.t |
26100f |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 29 \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{8} \cdot 29^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$870$ |
$16$ |
$0$ |
$0.877381303$ |
$1$ |
|
$2$ |
$27648$ |
$1.108677$ |
$813189888/609725$ |
$0.98400$ |
$3.56368$ |
$[0, 0, 0, 3675, 46625]$ |
\(y^2=x^3+3675x+46625\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 174.8.0.?, 870.16.0.? |
$[(160, 2175)]$ |
26100.w2 |
26100a2 |
26100.w |
26100a |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 29 \) |
\( - 2^{4} \cdot 3^{9} \cdot 5^{8} \cdot 29^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$870$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$82944$ |
$1.657982$ |
$813189888/609725$ |
$0.98400$ |
$4.21185$ |
$[0, 0, 0, 33075, -1258875]$ |
\(y^2=x^3+33075x-1258875\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 174.8.0.?, 870.16.0.? |
$[ ]$ |
83520.bf2 |
83520e2 |
83520.bf |
83520e |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 29 \) |
\( - 2^{10} \cdot 3^{9} \cdot 5^{2} \cdot 29^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$696$ |
$16$ |
$0$ |
$2.084677491$ |
$1$ |
|
$6$ |
$110592$ |
$1.199837$ |
$813189888/609725$ |
$0.98400$ |
$3.29445$ |
$[0, 0, 0, 5292, -80568]$ |
\(y^2=x^3+5292x-80568\) |
3.4.0.a.1, 24.8.0-3.a.1.1, 174.8.0.?, 696.16.0.? |
$[(69, 783), (321/4, 11745/4)]$ |
83520.cc2 |
83520dn2 |
83520.cc |
83520dn |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 29 \) |
\( - 2^{10} \cdot 3^{9} \cdot 5^{2} \cdot 29^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$696$ |
$16$ |
$0$ |
$1.308176746$ |
$1$ |
|
$2$ |
$110592$ |
$1.199837$ |
$813189888/609725$ |
$0.98400$ |
$3.29445$ |
$[0, 0, 0, 5292, 80568]$ |
\(y^2=x^3+5292x+80568\) |
3.4.0.a.1, 24.8.0-3.a.1.3, 174.8.0.?, 696.16.0.? |
$[(-11, 145)]$ |
83520.er2 |
83520k1 |
83520.er |
83520k |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 29 \) |
\( - 2^{10} \cdot 3^{3} \cdot 5^{2} \cdot 29^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$696$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$36864$ |
$0.650531$ |
$813189888/609725$ |
$0.98400$ |
$2.71280$ |
$[0, 0, 0, 588, 2984]$ |
\(y^2=x^3+588x+2984\) |
3.4.0.a.1, 24.8.0-3.a.1.2, 174.8.0.?, 696.16.0.? |
$[ ]$ |
83520.fi2 |
83520dt1 |
83520.fi |
83520dt |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 29 \) |
\( - 2^{10} \cdot 3^{3} \cdot 5^{2} \cdot 29^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$696$ |
$16$ |
$0$ |
$2.699308205$ |
$1$ |
|
$2$ |
$36864$ |
$0.650531$ |
$813189888/609725$ |
$0.98400$ |
$2.71280$ |
$[0, 0, 0, 588, -2984]$ |
\(y^2=x^3+588x-2984\) |
3.4.0.a.1, 24.8.0-3.a.1.4, 174.8.0.?, 696.16.0.? |
$[(5, 9)]$ |
104400.cs2 |
104400ct2 |
104400.cs |
104400ct |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 29 \) |
\( - 2^{4} \cdot 3^{9} \cdot 5^{8} \cdot 29^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1740$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$331776$ |
$1.657982$ |
$813189888/609725$ |
$0.98400$ |
$3.70658$ |
$[0, 0, 0, 33075, 1258875]$ |
\(y^2=x^3+33075x+1258875\) |
3.4.0.a.1, 60.8.0-3.a.1.1, 174.8.0.?, 1740.16.0.? |
$[ ]$ |
104400.db2 |
104400de1 |
104400.db |
104400de |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 29 \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{8} \cdot 29^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1740$ |
$16$ |
$0$ |
$1.385320117$ |
$1$ |
|
$2$ |
$110592$ |
$1.108677$ |
$813189888/609725$ |
$0.98400$ |
$3.13617$ |
$[0, 0, 0, 3675, -46625]$ |
\(y^2=x^3+3675x-46625\) |
3.4.0.a.1, 60.8.0-3.a.1.2, 174.8.0.?, 1740.16.0.? |
$[(14, 87)]$ |
151380.j2 |
151380bf1 |
151380.j |
151380bf |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 29^{2} \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{2} \cdot 29^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$174$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$967680$ |
$1.987604$ |
$813189888/609725$ |
$0.98400$ |
$3.92274$ |
$[0, 0, 0, 123627, 9097097]$ |
\(y^2=x^3+123627x+9097097\) |
3.4.0.a.1, 6.8.0-3.a.1.2, 87.8.0.?, 174.16.0.? |
$[ ]$ |
151380.v2 |
151380y2 |
151380.v |
151380y |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 29^{2} \) |
\( - 2^{4} \cdot 3^{9} \cdot 5^{2} \cdot 29^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$174$ |
$16$ |
$0$ |
$1.331518774$ |
$1$ |
|
$2$ |
$2903040$ |
$2.536911$ |
$813189888/609725$ |
$0.98400$ |
$4.47538$ |
$[0, 0, 0, 1112643, -245621619]$ |
\(y^2=x^3+1112643x-245621619\) |
3.4.0.a.1, 6.8.0-3.a.1.1, 87.8.0.?, 174.16.0.? |
$[(580, 24389)]$ |
255780.v2 |
255780v2 |
255780.v |
255780v |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 29 \) |
\( - 2^{4} \cdot 3^{9} \cdot 5^{2} \cdot 7^{6} \cdot 29^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1218$ |
$16$ |
$0$ |
$7.950375544$ |
$1$ |
|
$0$ |
$1306368$ |
$1.826218$ |
$813189888/609725$ |
$0.98400$ |
$3.60197$ |
$[0, 0, 0, 64827, 3454353]$ |
\(y^2=x^3+64827x+3454353\) |
3.4.0.a.1, 21.8.0-3.a.1.2, 174.8.0.?, 1218.16.0.? |
$[(21561/8, 4080915/8)]$ |
255780.bj2 |
255780bj1 |
255780.bj |
255780bj |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 29 \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{2} \cdot 7^{6} \cdot 29^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1218$ |
$16$ |
$0$ |
$0.576469566$ |
$1$ |
|
$6$ |
$435456$ |
$1.276913$ |
$813189888/609725$ |
$0.98400$ |
$3.07261$ |
$[0, 0, 0, 7203, -127939]$ |
\(y^2=x^3+7203x-127939\) |
3.4.0.a.1, 21.8.0-3.a.1.1, 174.8.0.?, 1218.16.0.? |
$[(37, 435)]$ |
417600.fq2 |
417600fq1 |
417600.fq |
417600fq |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 29 \) |
\( - 2^{10} \cdot 3^{3} \cdot 5^{8} \cdot 29^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3480$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$884736$ |
$1.455250$ |
$813189888/609725$ |
$0.98400$ |
$3.12158$ |
$[0, 0, 0, 14700, -373000]$ |
\(y^2=x^3+14700x-373000\) |
3.4.0.a.1, 120.8.0.?, 174.8.0.?, 3480.16.0.? |
$[ ]$ |
417600.gk2 |
417600gk2 |
417600.gk |
417600gk |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 29 \) |
\( - 2^{10} \cdot 3^{9} \cdot 5^{8} \cdot 29^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3480$ |
$16$ |
$0$ |
$3.374065157$ |
$1$ |
|
$2$ |
$2654208$ |
$2.004555$ |
$813189888/609725$ |
$0.98400$ |
$3.63090$ |
$[0, 0, 0, 132300, 10071000]$ |
\(y^2=x^3+132300x+10071000\) |
3.4.0.a.1, 120.8.0.?, 174.8.0.?, 3480.16.0.? |
$[(1221, 44631)]$ |
417600.jg2 |
417600jg2 |
417600.jg |
417600jg |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 29 \) |
\( - 2^{10} \cdot 3^{9} \cdot 5^{8} \cdot 29^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3480$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2654208$ |
$2.004555$ |
$813189888/609725$ |
$0.98400$ |
$3.63090$ |
$[0, 0, 0, 132300, -10071000]$ |
\(y^2=x^3+132300x-10071000\) |
3.4.0.a.1, 120.8.0.?, 174.8.0.?, 3480.16.0.? |
$[ ]$ |
417600.ka2 |
417600ka1 |
417600.ka |
417600ka |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 29 \) |
\( - 2^{10} \cdot 3^{3} \cdot 5^{8} \cdot 29^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3480$ |
$16$ |
$0$ |
$5.474947758$ |
$1$ |
|
$2$ |
$884736$ |
$1.455250$ |
$813189888/609725$ |
$0.98400$ |
$3.12158$ |
$[0, 0, 0, 14700, 373000]$ |
\(y^2=x^3+14700x+373000\) |
3.4.0.a.1, 120.8.0.?, 174.8.0.?, 3480.16.0.? |
$[(341, 6711)]$ |