Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
26520.bd1 |
26520bc1 |
26520.bd |
26520bc |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{7} \cdot 13^{2} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$0.146979667$ |
$1$ |
|
$6$ |
$24192$ |
$0.796141$ |
$7767586344704/6060234375$ |
$0.88798$ |
$3.18620$ |
$[0, 1, 0, 1040, -7267]$ |
\(y^2=x^3+x^2+1040x-7267\) |
510.2.0.? |
$[(26, 195)]$ |
53040.z1 |
53040j1 |
53040.z |
53040j |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{7} \cdot 13^{2} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$0.545465467$ |
$1$ |
|
$2$ |
$48384$ |
$0.796141$ |
$7767586344704/6060234375$ |
$0.88798$ |
$2.98319$ |
$[0, -1, 0, 1040, 7267]$ |
\(y^2=x^3-x^2+1040x+7267\) |
510.2.0.? |
$[(39, 325)]$ |
79560.o1 |
79560o1 |
79560.o |
79560o |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{4} \cdot 3^{9} \cdot 5^{7} \cdot 13^{2} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$193536$ |
$1.345448$ |
$7767586344704/6060234375$ |
$0.88798$ |
$3.46015$ |
$[0, 0, 0, 9357, 205567]$ |
\(y^2=x^3+9357x+205567\) |
510.2.0.? |
$[ ]$ |
132600.k1 |
132600ch1 |
132600.k |
132600ch |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \cdot 17 \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{13} \cdot 13^{2} \cdot 17 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$2.344080849$ |
$1$ |
|
$8$ |
$580608$ |
$1.600861$ |
$7767586344704/6060234375$ |
$0.88798$ |
$3.57015$ |
$[0, -1, 0, 25992, -960363]$ |
\(y^2=x^3-x^2+25992x-960363\) |
510.2.0.? |
$[(182, 3125), (262, 4875)]$ |
159120.y1 |
159120dx1 |
159120.y |
159120dx |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{4} \cdot 3^{9} \cdot 5^{7} \cdot 13^{2} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$387072$ |
$1.345448$ |
$7767586344704/6060234375$ |
$0.88798$ |
$3.25991$ |
$[0, 0, 0, 9357, -205567]$ |
\(y^2=x^3+9357x-205567\) |
510.2.0.? |
$[ ]$ |
212160.bf1 |
212160ho1 |
212160.bf |
212160ho |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{10} \cdot 3^{3} \cdot 5^{7} \cdot 13^{2} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$7.752740879$ |
$1$ |
|
$0$ |
$387072$ |
$1.142714$ |
$7767586344704/6060234375$ |
$0.88798$ |
$2.98509$ |
$[0, -1, 0, 4159, -62295]$ |
\(y^2=x^3-x^2+4159x-62295\) |
510.2.0.? |
$[(1824/11, 79833/11)]$ |
212160.ep1 |
212160bj1 |
212160.ep |
212160bj |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{10} \cdot 3^{3} \cdot 5^{7} \cdot 13^{2} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$2.218841519$ |
$1$ |
|
$2$ |
$387072$ |
$1.142714$ |
$7767586344704/6060234375$ |
$0.88798$ |
$2.98509$ |
$[0, 1, 0, 4159, 62295]$ |
\(y^2=x^3+x^2+4159x+62295\) |
510.2.0.? |
$[(-14, 39)]$ |
265200.fw1 |
265200fw1 |
265200.fw |
265200fw |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13 \cdot 17 \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{13} \cdot 13^{2} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1.485857482$ |
$1$ |
|
$0$ |
$1161216$ |
$1.600861$ |
$7767586344704/6060234375$ |
$0.88798$ |
$3.37199$ |
$[0, 1, 0, 25992, 960363]$ |
\(y^2=x^3+x^2+25992x+960363\) |
510.2.0.? |
$[(2397/2, 121875/2)]$ |
344760.bp1 |
344760bp1 |
344760.bp |
344760bp |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13^{2} \cdot 17 \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{7} \cdot 13^{8} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4064256$ |
$2.078617$ |
$7767586344704/6060234375$ |
$0.88798$ |
$3.75224$ |
$[0, 1, 0, 175704, -16668495]$ |
\(y^2=x^3+x^2+175704x-16668495\) |
510.2.0.? |
$[ ]$ |
397800.by1 |
397800by1 |
397800.by |
397800by |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 17 \) |
\( - 2^{4} \cdot 3^{9} \cdot 5^{13} \cdot 13^{2} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$1.649427150$ |
$1$ |
|
$2$ |
$4644864$ |
$2.150166$ |
$7767586344704/6060234375$ |
$0.88798$ |
$3.77718$ |
$[0, 0, 0, 233925, 25695875]$ |
\(y^2=x^3+233925x+25695875\) |
510.2.0.? |
$[(190, 8775)]$ |
450840.f1 |
450840f1 |
450840.f |
450840f |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{7} \cdot 13^{2} \cdot 17^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$510$ |
$2$ |
$0$ |
$4.874705627$ |
$1$ |
|
$2$ |
$6967296$ |
$2.212746$ |
$7767586344704/6060234375$ |
$0.88798$ |
$3.79855$ |
$[0, -1, 0, 300464, -37505735]$ |
\(y^2=x^3-x^2+300464x-37505735\) |
510.2.0.? |
$[(240, 6955)]$ |