| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 6774.c2 |
6774c2 |
6774.c |
6774c |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 1129 \) |
\( - 2^{2} \cdot 3 \cdot 1129^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$13548$ |
$12$ |
$0$ |
$2.624655435$ |
$1$ |
|
$2$ |
$1536$ |
$0.062928$ |
$7335308807/15295692$ |
$0.85011$ |
$2.68372$ |
$[1, 1, 0, 41, -143]$ |
\(y^2+xy=x^3+x^2+41x-143\) |
2.3.0.a.1, 6.6.0.a.1, 4516.6.0.?, 13548.12.0.? |
$[(9, 28)]$ |
| 20322.d2 |
20322f2 |
20322.d |
20322f |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 1129 \) |
\( - 2^{2} \cdot 3^{7} \cdot 1129^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$13548$ |
$12$ |
$0$ |
$1.789742493$ |
$1$ |
|
$4$ |
$12288$ |
$0.612234$ |
$7335308807/15295692$ |
$0.85011$ |
$3.05101$ |
$[1, -1, 1, 364, 4227]$ |
\(y^2+xy+y=x^3-x^2+364x+4227\) |
2.3.0.a.1, 6.6.0.a.1, 4516.6.0.?, 13548.12.0.? |
$[(-7, 39)]$ |
| 54192.bc2 |
54192bd2 |
54192.bc |
54192bd |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 1129 \) |
\( - 2^{14} \cdot 3 \cdot 1129^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$13548$ |
$12$ |
$0$ |
$5.835194201$ |
$1$ |
|
$1$ |
$36864$ |
$0.756076$ |
$7335308807/15295692$ |
$0.85011$ |
$2.93483$ |
$[0, 1, 0, 648, 10452]$ |
\(y^2=x^3+x^2+648x+10452\) |
2.3.0.a.1, 6.6.0.a.1, 4516.6.0.?, 13548.12.0.? |
$[(508/3, 12950/3)]$ |
| 162576.h2 |
162576f2 |
162576.h |
162576f |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 1129 \) |
\( - 2^{14} \cdot 3^{7} \cdot 1129^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$13548$ |
$12$ |
$0$ |
$3.942921328$ |
$1$ |
|
$3$ |
$294912$ |
$1.305382$ |
$7335308807/15295692$ |
$0.85011$ |
$3.21548$ |
$[0, 0, 0, 5829, -276374]$ |
\(y^2=x^3+5829x-276374\) |
2.3.0.a.1, 6.6.0.a.1, 4516.6.0.?, 13548.12.0.? |
$[(263, 4410)]$ |
| 169350.ba2 |
169350f2 |
169350.ba |
169350f |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 1129 \) |
\( - 2^{2} \cdot 3 \cdot 5^{6} \cdot 1129^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$13548$ |
$12$ |
$0$ |
$3.731467247$ |
$4$ |
$2$ |
$2$ |
$196608$ |
$0.867647$ |
$7335308807/15295692$ |
$0.85011$ |
$2.76828$ |
$[1, 0, 0, 1012, -19908]$ |
\(y^2+xy=x^3+1012x-19908\) |
2.3.0.a.1, 6.6.0.a.1, 4516.6.0.?, 13548.12.0.? |
$[(36, 234)]$ |
| 216768.k2 |
216768bb2 |
216768.k |
216768bb |
$2$ |
$2$ |
\( 2^{6} \cdot 3 \cdot 1129 \) |
\( - 2^{20} \cdot 3 \cdot 1129^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$13548$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$294912$ |
$1.102650$ |
$7335308807/15295692$ |
$0.85011$ |
$2.94218$ |
$[0, -1, 0, 2591, 81025]$ |
\(y^2=x^3-x^2+2591x+81025\) |
2.3.0.a.1, 6.6.0.a.1, 4516.6.0.?, 13548.12.0.? |
$[ ]$ |
| 216768.bu2 |
216768br2 |
216768.bu |
216768br |
$2$ |
$2$ |
\( 2^{6} \cdot 3 \cdot 1129 \) |
\( - 2^{20} \cdot 3 \cdot 1129^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$13548$ |
$12$ |
$0$ |
$37.55091449$ |
$1$ |
|
$3$ |
$294912$ |
$1.102650$ |
$7335308807/15295692$ |
$0.85011$ |
$2.94218$ |
$[0, 1, 0, 2591, -81025]$ |
\(y^2=x^3+x^2+2591x-81025\) |
2.3.0.a.1, 6.6.0.a.1, 4516.6.0.?, 13548.12.0.? |
$[(241/3, 2456/3), (754, 20763)]$ |
| 331926.l2 |
331926l2 |
331926.l |
331926l |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 1129 \) |
\( - 2^{2} \cdot 3 \cdot 7^{6} \cdot 1129^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$13548$ |
$12$ |
$0$ |
$2.863758522$ |
$1$ |
|
$2$ |
$589824$ |
$1.035883$ |
$7335308807/15295692$ |
$0.85011$ |
$2.78055$ |
$[1, 0, 1, 1983, 55024]$ |
\(y^2+xy+y=x^3+1983x+55024\) |
2.3.0.a.1, 6.6.0.a.1, 4516.6.0.?, 13548.12.0.? |
$[(88, 911)]$ |