Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
37.b1 |
37b2 |
37.b |
37b |
$3$ |
$9$ |
\( 37 \) |
\( 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
27.72.0.2 |
3B.1.2 |
$1998$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$6$ |
$0.222082$ |
$727057727488000/37$ |
$1.08598$ |
$9.47682$ |
$[0, 1, 1, -1873, -31833]$ |
\(y^2+y=x^3+x^2-1873x-31833\) |
3.8.0-3.a.1.1, 9.24.0-9.a.1.1, 27.72.0-27.a.1.1, 74.2.0.?, 222.16.0.?, $\ldots$ |
$[ ]$ |
333.b1 |
333a3 |
333.b |
333a |
$3$ |
$9$ |
\( 3^{2} \cdot 37 \) |
\( 3^{6} \cdot 37 \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.72.0.1 |
3B.1.1 |
$1998$ |
$1296$ |
$43$ |
$6.522928749$ |
$1$ |
|
$2$ |
$180$ |
$0.771388$ |
$727057727488000/37$ |
$1.08598$ |
$7.02664$ |
$[0, 0, 1, -16860, 842625]$ |
\(y^2+y=x^3-16860x+842625\) |
3.8.0-3.a.1.2, 9.24.0-9.a.1.2, 27.72.0-27.a.1.2, 74.2.0.?, 222.16.0.?, $\ldots$ |
$[(-351/2, 10261/2)]$ |
592.a1 |
592e3 |
592.a |
592e |
$3$ |
$9$ |
\( 2^{4} \cdot 37 \) |
\( 2^{12} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$3996$ |
$1296$ |
$43$ |
$1.025677162$ |
$1$ |
|
$2$ |
$432$ |
$0.915229$ |
$727057727488000/37$ |
$1.08598$ |
$6.66370$ |
$[0, -1, 0, -29973, 2007325]$ |
\(y^2=x^3-x^2-29973x+2007325\) |
3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.2, 27.36.0.a.1, 36.24.0-9.a.1.1, $\ldots$ |
$[(100, 5)]$ |
925.b1 |
925b3 |
925.b |
925b |
$3$ |
$9$ |
\( 5^{2} \cdot 37 \) |
\( 5^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$9990$ |
$1296$ |
$43$ |
$2.846851736$ |
$1$ |
|
$0$ |
$864$ |
$1.026800$ |
$727057727488000/37$ |
$1.08598$ |
$6.42430$ |
$[0, -1, 1, -46833, -3885432]$ |
\(y^2+y=x^3-x^2-46833x-3885432\) |
3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.1, 27.36.0.a.1, 45.24.0-9.a.1.2, $\ldots$ |
$[(-15078/11, -653/11)]$ |
1369.c1 |
1369a3 |
1369.c |
1369a |
$3$ |
$9$ |
\( 37^{2} \) |
\( 37^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$1998$ |
$1296$ |
$43$ |
$5.527639665$ |
$1$ |
|
$0$ |
$8208$ |
$2.027542$ |
$727057727488000/37$ |
$1.08598$ |
$7.73841$ |
$[0, 1, 1, -2564593, -1581651042]$ |
\(y^2+y=x^3+x^2-2564593x-1581651042\) |
3.4.0.a.1, 6.8.0-3.a.1.2, 9.12.0.a.1, 18.24.0-9.a.1.2, 27.36.0.a.1, $\ldots$ |
$[(-4028939/66, -145117/66)]$ |
1813.b1 |
1813c3 |
1813.b |
1813c |
$3$ |
$9$ |
\( 7^{2} \cdot 37 \) |
\( 7^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$13986$ |
$1296$ |
$43$ |
$1.579657105$ |
$1$ |
|
$0$ |
$2268$ |
$1.195036$ |
$727057727488000/37$ |
$1.08598$ |
$6.11717$ |
$[0, -1, 1, -91793, 10735059]$ |
\(y^2+y=x^3-x^2-91793x+10735059\) |
3.4.0.a.1, 9.12.0.a.1, 21.8.0-3.a.1.2, 27.36.0.a.1, 63.24.0-9.a.1.2, $\ldots$ |
$[(701/2, -3/2)]$ |
2368.d1 |
2368c3 |
2368.d |
2368c |
$3$ |
$9$ |
\( 2^{6} \cdot 37 \) |
\( 2^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$7992$ |
$1296$ |
$43$ |
$5.015196751$ |
$1$ |
|
$0$ |
$864$ |
$0.568655$ |
$727057727488000/37$ |
$1.08598$ |
$4.93950$ |
$[0, -1, 0, -7493, -247169]$ |
\(y^2=x^3-x^2-7493x-247169\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.1, 27.36.0.a.1, 72.24.0.?, $\ldots$ |
$[(-26262/23, 31/23)]$ |
2368.m1 |
2368j3 |
2368.m |
2368j |
$3$ |
$9$ |
\( 2^{6} \cdot 37 \) |
\( 2^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$7992$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$864$ |
$0.568655$ |
$727057727488000/37$ |
$1.08598$ |
$4.93950$ |
$[0, 1, 0, -7493, 247169]$ |
\(y^2=x^3+x^2-7493x+247169\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.3, 27.36.0.a.1, 72.24.0.?, $\ldots$ |
$[ ]$ |
4477.a1 |
4477b3 |
4477.a |
4477b |
$3$ |
$9$ |
\( 11^{2} \cdot 37 \) |
\( 11^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$21978$ |
$1296$ |
$43$ |
$3.430677224$ |
$1$ |
|
$0$ |
$8100$ |
$1.421030$ |
$727057727488000/37$ |
$1.08598$ |
$5.78198$ |
$[0, 1, 1, -226673, 41462746]$ |
\(y^2+y=x^3+x^2-226673x+41462746\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 33.8.0-3.a.1.1, 74.2.0.?, $\ldots$ |
$[(2470/3, 64/3)]$ |
5328.k1 |
5328u3 |
5328.k |
5328u |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{2} \cdot 37 \) |
\( 2^{12} \cdot 3^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$3996$ |
$1296$ |
$43$ |
$1$ |
$9$ |
$3$ |
$0$ |
$12960$ |
$1.464535$ |
$727057727488000/37$ |
$1.08598$ |
$5.72556$ |
$[0, 0, 0, -269760, -53928016]$ |
\(y^2=x^3-269760x-53928016\) |
3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.1, 27.36.0.a.1, 36.24.0-9.a.1.2, $\ldots$ |
$[ ]$ |
6253.b1 |
6253a3 |
6253.b |
6253a |
$3$ |
$9$ |
\( 13^{2} \cdot 37 \) |
\( 13^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$25974$ |
$1296$ |
$43$ |
$9.478525470$ |
$1$ |
|
$0$ |
$12960$ |
$1.504557$ |
$727057727488000/37$ |
$1.08598$ |
$5.67564$ |
$[0, 1, 1, -316593, -68670260]$ |
\(y^2+y=x^3+x^2-316593x-68670260\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 39.8.0-3.a.1.2, 74.2.0.?, $\ldots$ |
$[(-29855138/303, -14867209/303)]$ |
8325.p1 |
8325q3 |
8325.p |
8325q |
$3$ |
$9$ |
\( 3^{2} \cdot 5^{2} \cdot 37 \) |
\( 3^{6} \cdot 5^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$9990$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$25920$ |
$1.576107$ |
$727057727488000/37$ |
$1.08598$ |
$5.59081$ |
$[0, 0, 1, -421500, 105328156]$ |
\(y^2+y=x^3-421500x+105328156\) |
3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.2, 27.36.0.a.1, 45.24.0-9.a.1.1, $\ldots$ |
$[ ]$ |
10693.e1 |
10693a3 |
10693.e |
10693a |
$3$ |
$9$ |
\( 17^{2} \cdot 37 \) |
\( 17^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$33966$ |
$1296$ |
$43$ |
$6.959755030$ |
$1$ |
|
$0$ |
$27648$ |
$1.638689$ |
$727057727488000/37$ |
$1.08598$ |
$5.52090$ |
$[0, -1, 1, -541393, -153146123]$ |
\(y^2+y=x^3-x^2-541393x-153146123\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 51.8.0-3.a.1.1, 74.2.0.?, $\ldots$ |
$[(-3139435/86, -266297/86)]$ |
12321.f1 |
12321c3 |
12321.f |
12321c |
$3$ |
$9$ |
\( 3^{2} \cdot 37^{2} \) |
\( 3^{6} \cdot 37^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$1998$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$246240$ |
$2.576847$ |
$727057727488000/37$ |
$1.08598$ |
$6.63306$ |
$[0, 0, 1, -23081340, 42681496788]$ |
\(y^2+y=x^3-23081340x+42681496788\) |
3.4.0.a.1, 6.8.0-3.a.1.1, 9.12.0.a.1, 18.24.0-9.a.1.1, 27.36.0.a.1, $\ldots$ |
$[ ]$ |
13357.b1 |
13357a3 |
13357.b |
13357a |
$3$ |
$9$ |
\( 19^{2} \cdot 37 \) |
\( 19^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$37962$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$42768$ |
$1.694302$ |
$727057727488000/37$ |
$1.08598$ |
$5.46187$ |
$[0, -1, 1, -676273, 214283446]$ |
\(y^2+y=x^3-x^2-676273x+214283446\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 57.8.0-3.a.1.2, 74.2.0.?, $\ldots$ |
$[ ]$ |
14800.ba1 |
14800l3 |
14800.ba |
14800l |
$3$ |
$9$ |
\( 2^{4} \cdot 5^{2} \cdot 37 \) |
\( 2^{12} \cdot 5^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$19980$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$62208$ |
$1.719948$ |
$727057727488000/37$ |
$1.08598$ |
$5.43557$ |
$[0, 1, 0, -749333, 249416963]$ |
\(y^2=x^3+x^2-749333x+249416963\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 60.8.0-3.a.1.1, 74.2.0.?, $\ldots$ |
$[ ]$ |
16317.h1 |
16317g3 |
16317.h |
16317g |
$3$ |
$9$ |
\( 3^{2} \cdot 7^{2} \cdot 37 \) |
\( 3^{6} \cdot 7^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$13986$ |
$1296$ |
$43$ |
$1$ |
$9$ |
$3$ |
$0$ |
$68040$ |
$1.744343$ |
$727057727488000/37$ |
$1.08598$ |
$5.41107$ |
$[0, 0, 1, -826140, -289020461]$ |
\(y^2+y=x^3-826140x-289020461\) |
3.4.0.a.1, 9.12.0.a.1, 21.8.0-3.a.1.1, 27.36.0.a.1, 63.24.0-9.a.1.1, $\ldots$ |
$[ ]$ |
19573.c1 |
19573a3 |
19573.c |
19573a |
$3$ |
$9$ |
\( 23^{2} \cdot 37 \) |
\( 23^{6} \cdot 37 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$45954$ |
$1296$ |
$43$ |
$4.835698432$ |
$1$ |
|
$4$ |
$71280$ |
$1.789829$ |
$727057727488000/37$ |
$1.08598$ |
$5.36668$ |
$[0, 1, 1, -990993, 379381573]$ |
\(y^2+y=x^3+x^2-990993x+379381573\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 69.8.0-3.a.1.1, 74.2.0.?, $\ldots$ |
$[(14359/5, 202/5), (571, 141)]$ |
21312.bh1 |
21312k3 |
21312.bh |
21312k |
$3$ |
$9$ |
\( 2^{6} \cdot 3^{2} \cdot 37 \) |
\( 2^{6} \cdot 3^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$7992$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$25920$ |
$1.117962$ |
$727057727488000/37$ |
$1.08598$ |
$4.51194$ |
$[0, 0, 0, -67440, 6741002]$ |
\(y^2=x^3-67440x+6741002\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.2, 27.36.0.a.1, 72.24.0.?, $\ldots$ |
$[ ]$ |
21312.bn1 |
21312bq3 |
21312.bn |
21312bq |
$3$ |
$9$ |
\( 2^{6} \cdot 3^{2} \cdot 37 \) |
\( 2^{6} \cdot 3^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$7992$ |
$1296$ |
$43$ |
$17.91360260$ |
$1$ |
|
$0$ |
$25920$ |
$1.117962$ |
$727057727488000/37$ |
$1.08598$ |
$4.51194$ |
$[0, 0, 0, -67440, -6741002]$ |
\(y^2=x^3-67440x-6741002\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.4, 27.36.0.a.1, 72.24.0.?, $\ldots$ |
$[(-10566668589/8395, 7957186159/8395)]$ |
21904.d1 |
21904h3 |
21904.d |
21904h |
$3$ |
$9$ |
\( 2^{4} \cdot 37^{2} \) |
\( 2^{12} \cdot 37^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$3996$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$590976$ |
$2.720688$ |
$727057727488000/37$ |
$1.08598$ |
$6.42391$ |
$[0, -1, 0, -41033493, 101184633181]$ |
\(y^2=x^3-x^2-41033493x+101184633181\) |
3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.4, 27.36.0.a.1, 36.24.0-9.a.1.3, $\ldots$ |
$[ ]$ |
29008.l1 |
29008l3 |
29008.l |
29008l |
$3$ |
$9$ |
\( 2^{4} \cdot 7^{2} \cdot 37 \) |
\( 2^{12} \cdot 7^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$27972$ |
$1296$ |
$43$ |
$1$ |
$9$ |
$3$ |
$0$ |
$163296$ |
$1.888184$ |
$727057727488000/37$ |
$1.08598$ |
$5.27606$ |
$[0, 1, 0, -1468693, -685575101]$ |
\(y^2=x^3+x^2-1468693x-685575101\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 84.8.0.?, $\ldots$ |
$[ ]$ |
31117.d1 |
31117a3 |
31117.d |
31117a |
$3$ |
$9$ |
\( 29^{2} \cdot 37 \) |
\( 29^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$57942$ |
$1296$ |
$43$ |
$6.938596966$ |
$1$ |
|
$2$ |
$145152$ |
$1.905729$ |
$727057727488000/37$ |
$1.08598$ |
$5.26062$ |
$[0, -1, 1, -1575473, -760615110]$ |
\(y^2+y=x^3-x^2-1575473x-760615110\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 87.8.0.?, $\ldots$ |
$[(29184, 4980822)]$ |
34225.e1 |
34225b3 |
34225.e |
34225b |
$3$ |
$9$ |
\( 5^{2} \cdot 37^{2} \) |
\( 5^{6} \cdot 37^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$9990$ |
$1296$ |
$43$ |
$17.82455630$ |
$1$ |
|
$0$ |
$1181952$ |
$2.832260$ |
$727057727488000/37$ |
$1.08598$ |
$6.27756$ |
$[0, -1, 1, -64114833, -197578150557]$ |
\(y^2+y=x^3-x^2-64114833x-197578150557\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 30.8.0-3.a.1.2, 74.2.0.?, $\ldots$ |
$[(-1788157887647/19668, 10009700082359/19668)]$ |
35557.c1 |
35557a3 |
35557.c |
35557a |
$3$ |
$9$ |
\( 31^{2} \cdot 37 \) |
\( 31^{6} \cdot 37 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$61938$ |
$1296$ |
$43$ |
$4.606494504$ |
$1$ |
|
$6$ |
$181440$ |
$1.939075$ |
$727057727488000/37$ |
$1.08598$ |
$5.23185$ |
$[0, -1, 1, -1800273, 930327825]$ |
\(y^2+y=x^3-x^2-1800273x+930327825\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 93.8.0.?, $\ldots$ |
$[(765, 480), (497329/27, 86252509/27)]$ |
40293.h1 |
40293j3 |
40293.h |
40293j |
$3$ |
$9$ |
\( 3^{2} \cdot 11^{2} \cdot 37 \) |
\( 3^{6} \cdot 11^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$21978$ |
$1296$ |
$43$ |
$1$ |
$9$ |
$3$ |
$0$ |
$243000$ |
$1.970335$ |
$727057727488000/37$ |
$1.08598$ |
$5.20553$ |
$[0, 0, 1, -2040060, -1121534208]$ |
\(y^2+y=x^3-2040060x-1121534208\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 33.8.0-3.a.1.2, 74.2.0.?, $\ldots$ |
$[ ]$ |
45325.k1 |
45325c3 |
45325.k |
45325c |
$3$ |
$9$ |
\( 5^{2} \cdot 7^{2} \cdot 37 \) |
\( 5^{6} \cdot 7^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$69930$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$326592$ |
$1.999756$ |
$727057727488000/37$ |
$1.08598$ |
$5.18132$ |
$[0, 1, 1, -2294833, 1337292744]$ |
\(y^2+y=x^3+x^2-2294833x+1337292744\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 105.8.0.?, $\ldots$ |
$[ ]$ |
56277.j1 |
56277c3 |
56277.j |
56277c |
$3$ |
$9$ |
\( 3^{2} \cdot 13^{2} \cdot 37 \) |
\( 3^{6} \cdot 13^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$25974$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$388800$ |
$2.053864$ |
$727057727488000/37$ |
$1.08598$ |
$5.13816$ |
$[0, 0, 1, -2849340, 1851247674]$ |
\(y^2+y=x^3-2849340x+1851247674\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 39.8.0-3.a.1.1, 74.2.0.?, $\ldots$ |
$[ ]$ |
59200.bl1 |
59200cv3 |
59200.bl |
59200cv |
$3$ |
$9$ |
\( 2^{6} \cdot 5^{2} \cdot 37 \) |
\( 2^{6} \cdot 5^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$39960$ |
$1296$ |
$43$ |
$1.862196118$ |
$1$ |
|
$2$ |
$124416$ |
$1.373375$ |
$727057727488000/37$ |
$1.08598$ |
$4.37137$ |
$[0, -1, 0, -187333, 31270787]$ |
\(y^2=x^3-x^2-187333x+31270787\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 120.8.0.?, $\ldots$ |
$[(262, 325)]$ |
59200.cp1 |
59200x3 |
59200.cp |
59200x |
$3$ |
$9$ |
\( 2^{6} \cdot 5^{2} \cdot 37 \) |
\( 2^{6} \cdot 5^{6} \cdot 37 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$39960$ |
$1296$ |
$43$ |
$24.67418240$ |
$1$ |
|
$0$ |
$124416$ |
$1.373375$ |
$727057727488000/37$ |
$1.08598$ |
$4.37137$ |
$[0, 1, 0, -187333, -31270787]$ |
\(y^2=x^3+x^2-187333x-31270787\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 120.8.0.?, $\ldots$ |
$[(-2252/3, 1/3), (-24357503/312, 310175/312)]$ |
62197.c1 |
62197c3 |
62197.c |
62197c |
$3$ |
$9$ |
\( 37 \cdot 41^{2} \) |
\( 37 \cdot 41^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$81918$ |
$1296$ |
$43$ |
$1$ |
$9$ |
$3$ |
$0$ |
$403920$ |
$2.078869$ |
$727057727488000/37$ |
$1.08598$ |
$5.11878$ |
$[0, -1, 1, -3149073, -2149860489]$ |
\(y^2+y=x^3-x^2-3149073x-2149860489\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 123.8.0.?, $\ldots$ |
$[ ]$ |
67081.g1 |
67081a3 |
67081.g |
67081a |
$3$ |
$9$ |
\( 7^{2} \cdot 37^{2} \) |
\( 7^{6} \cdot 37^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$13986$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$3102624$ |
$3.000496$ |
$727057727488000/37$ |
$1.08598$ |
$6.07910$ |
$[0, -1, 1, -125665073, 542254977186]$ |
\(y^2+y=x^3-x^2-125665073x+542254977186\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 42.8.0-3.a.1.1, 74.2.0.?, $\ldots$ |
$[ ]$ |
68413.a1 |
68413a3 |
68413.a |
68413a |
$3$ |
$9$ |
\( 37 \cdot 43^{2} \) |
\( 37 \cdot 43^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$85914$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$471744$ |
$2.102680$ |
$727057727488000/37$ |
$1.08598$ |
$5.10066$ |
$[0, -1, 1, -3463793, 2482436292]$ |
\(y^2+y=x^3-x^2-3463793x+2482436292\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 129.8.0.?, $\ldots$ |
$[ ]$ |
71632.f1 |
71632p3 |
71632.f |
71632p |
$3$ |
$9$ |
\( 2^{4} \cdot 11^{2} \cdot 37 \) |
\( 2^{12} \cdot 11^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$43956$ |
$1296$ |
$43$ |
$1$ |
$9$ |
$3$ |
$0$ |
$583200$ |
$2.114178$ |
$727057727488000/37$ |
$1.08598$ |
$5.09202$ |
$[0, -1, 0, -3626773, -2657242531]$ |
\(y^2=x^3-x^2-3626773x-2657242531\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 132.8.0.?, $\ldots$ |
$[ ]$ |
81733.c1 |
81733c3 |
81733.c |
81733c |
$3$ |
$9$ |
\( 37 \cdot 47^{2} \) |
\( 37 \cdot 47^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$93906$ |
$1296$ |
$43$ |
$10.21475293$ |
$1$ |
|
$0$ |
$633420$ |
$2.147156$ |
$727057727488000/37$ |
$1.08598$ |
$5.06762$ |
$[0, 1, 1, -4138193, 3238764355]$ |
\(y^2+y=x^3+x^2-4138193x+3238764355\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 141.8.0.?, $\ldots$ |
$[(22597/6, 6439987/6)]$ |
87616.p1 |
87616j3 |
87616.p |
87616j |
$3$ |
$9$ |
\( 2^{6} \cdot 37^{2} \) |
\( 2^{6} \cdot 37^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$7992$ |
$1296$ |
$43$ |
$14.57198202$ |
$1$ |
|
$0$ |
$1181952$ |
$2.374115$ |
$727057727488000/37$ |
$1.08598$ |
$5.27598$ |
$[0, -1, 0, -10258373, -12642949961]$ |
\(y^2=x^3-x^2-10258373x-12642949961\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.5, 27.36.0.a.1, 72.24.0.?, $\ldots$ |
$[(-13829842126/2735, 4816548593/2735)]$ |
87616.bj1 |
87616bb3 |
87616.bj |
87616bb |
$3$ |
$9$ |
\( 2^{6} \cdot 37^{2} \) |
\( 2^{6} \cdot 37^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$7992$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$1181952$ |
$2.374115$ |
$727057727488000/37$ |
$1.08598$ |
$5.27598$ |
$[0, 1, 0, -10258373, 12642949961]$ |
\(y^2=x^3+x^2-10258373x+12642949961\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.7, 27.36.0.a.1, 72.24.0.?, $\ldots$ |
$[ ]$ |
96237.g1 |
96237e3 |
96237.g |
96237e |
$3$ |
$9$ |
\( 3^{2} \cdot 17^{2} \cdot 37 \) |
\( 3^{6} \cdot 17^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$33966$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$829440$ |
$2.187996$ |
$727057727488000/37$ |
$1.08598$ |
$5.03818$ |
$[0, 0, 1, -4872540, 4139817853]$ |
\(y^2+y=x^3-4872540x+4139817853\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 51.8.0-3.a.1.2, 74.2.0.?, $\ldots$ |
$[ ]$ |
100048.b1 |
100048i3 |
100048.b |
100048i |
$3$ |
$9$ |
\( 2^{4} \cdot 13^{2} \cdot 37 \) |
\( 2^{12} \cdot 13^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$51948$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$933120$ |
$2.197704$ |
$727057727488000/37$ |
$1.08598$ |
$5.03131$ |
$[0, -1, 0, -5065493, 4389831133]$ |
\(y^2=x^3-x^2-5065493x+4389831133\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 156.8.0.?, $\ldots$ |
$[ ]$ |
103933.b1 |
103933b3 |
103933.b |
103933b |
$3$ |
$9$ |
\( 37 \cdot 53^{2} \) |
\( 37 \cdot 53^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$105894$ |
$1296$ |
$43$ |
$1$ |
$9$ |
$3$ |
$0$ |
$906984$ |
$2.207226$ |
$727057727488000/37$ |
$1.08598$ |
$5.02461$ |
$[0, -1, 1, -5262193, -4644450356]$ |
\(y^2+y=x^3-x^2-5262193x-4644450356\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 159.8.0.?, $\ldots$ |
$[ ]$ |
111925.o1 |
111925d3 |
111925.o |
111925d |
$3$ |
$9$ |
\( 5^{2} \cdot 11^{2} \cdot 37 \) |
\( 5^{6} \cdot 11^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$109890$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$1166400$ |
$2.225750$ |
$727057727488000/37$ |
$1.08598$ |
$5.01171$ |
$[0, -1, 1, -5666833, 5194176943]$ |
\(y^2+y=x^3-x^2-5666833x+5194176943\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 165.8.0.?, $\ldots$ |
$[ ]$ |
116032.q1 |
116032bb3 |
116032.q |
116032bb |
$3$ |
$9$ |
\( 2^{6} \cdot 7^{2} \cdot 37 \) |
\( 2^{6} \cdot 7^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$55944$ |
$1296$ |
$43$ |
$20.36854852$ |
$1$ |
|
$0$ |
$326592$ |
$1.541611$ |
$727057727488000/37$ |
$1.08598$ |
$4.29223$ |
$[0, -1, 0, -367173, -85513301]$ |
\(y^2=x^3-x^2-367173x-85513301\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 168.8.0.?, $\ldots$ |
$[(-122940020826/18755, 261143135443/18755)]$ |
116032.bk1 |
116032a3 |
116032.bk |
116032a |
$3$ |
$9$ |
\( 2^{6} \cdot 7^{2} \cdot 37 \) |
\( 2^{6} \cdot 7^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$55944$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$326592$ |
$1.541611$ |
$727057727488000/37$ |
$1.08598$ |
$4.29223$ |
$[0, 1, 0, -367173, 85513301]$ |
\(y^2=x^3+x^2-367173x+85513301\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 168.8.0.?, $\ldots$ |
$[ ]$ |
120213.f1 |
120213h3 |
120213.f |
120213h |
$3$ |
$9$ |
\( 3^{2} \cdot 19^{2} \cdot 37 \) |
\( 3^{6} \cdot 19^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$37962$ |
$1296$ |
$43$ |
$18.62406696$ |
$1$ |
|
$0$ |
$1283040$ |
$2.243607$ |
$727057727488000/37$ |
$1.08598$ |
$4.99942$ |
$[0, 0, 1, -6086460, -5779566590]$ |
\(y^2+y=x^3-6086460x-5779566590\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 57.8.0-3.a.1.1, 74.2.0.?, $\ldots$ |
$[(-408549534919/16936, -369111972243/16936)]$ |
128797.a1 |
128797a3 |
128797.a |
128797a |
$3$ |
$9$ |
\( 37 \cdot 59^{2} \) |
\( 37 \cdot 59^{6} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$117882$ |
$1296$ |
$43$ |
$12.68755109$ |
$1$ |
|
$4$ |
$1202688$ |
$2.260849$ |
$727057727488000/37$ |
$1.08598$ |
$4.98770$ |
$[0, 1, 1, -6521073, 6407364502]$ |
\(y^2+y=x^3+x^2-6521073x+6407364502\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 177.8.0.?, $\ldots$ |
$[(1474, 0), (-18116/3, 2880514/3)]$ |
133200.cw1 |
133200ck3 |
133200.cw |
133200ck |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 37 \) |
\( 2^{12} \cdot 3^{6} \cdot 5^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$19980$ |
$1296$ |
$43$ |
$45.10960228$ |
$1$ |
|
$0$ |
$1866240$ |
$2.269253$ |
$727057727488000/37$ |
$1.08598$ |
$4.98204$ |
$[0, 0, 0, -6744000, -6741002000]$ |
\(y^2=x^3-6744000x-6741002000\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 60.8.0-3.a.1.2, 74.2.0.?, $\ldots$ |
$[(-34196581834982200230255/4775752322, 54208771496571584271254618425/4775752322)]$ |
137677.b1 |
137677b3 |
137677.b |
137677b |
$3$ |
$9$ |
\( 37 \cdot 61^{2} \) |
\( 37 \cdot 61^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$121878$ |
$1296$ |
$43$ |
$20.98444987$ |
$1$ |
|
$0$ |
$1360800$ |
$2.277519$ |
$727057727488000/37$ |
$1.08598$ |
$4.97650$ |
$[0, 1, 1, -6970673, -7086024368]$ |
\(y^2+y=x^3+x^2-6970673x-7086024368\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 183.8.0.?, $\ldots$ |
$[(65730447394/2973, 15599287940026589/2973)]$ |
156325.i1 |
156325i3 |
156325.i |
156325i |
$3$ |
$9$ |
\( 5^{2} \cdot 13^{2} \cdot 37 \) |
\( 5^{6} \cdot 13^{6} \cdot 37 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$129870$ |
$1296$ |
$43$ |
$19.30843110$ |
$1$ |
|
$0$ |
$1866240$ |
$2.309277$ |
$727057727488000/37$ |
$1.08598$ |
$4.95551$ |
$[0, -1, 1, -7914833, -8567952807]$ |
\(y^2+y=x^3-x^2-7914833x-8567952807\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 195.8.0.?, $\ldots$ |
$[(-25983/4, -7/4), (22773/2, 2894121/2)]$ |
165649.i1 |
165649i3 |
165649.i |
165649i |
$3$ |
$9$ |
\( 11^{2} \cdot 37^{2} \) |
\( 11^{6} \cdot 37^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$21978$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$11080800$ |
$3.226490$ |
$727057727488000/37$ |
$1.08598$ |
$5.84749$ |
$[0, 1, 1, -310315793, 2103936273445]$ |
\(y^2+y=x^3+x^2-310315793x+2103936273445\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 66.8.0-3.a.1.2, 74.2.0.?, $\ldots$ |
$[ ]$ |
166093.b1 |
166093b3 |
166093.b |
166093b |
$3$ |
$9$ |
\( 37 \cdot 67^{2} \) |
\( 37 \cdot 67^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$133866$ |
$1296$ |
$43$ |
$2.883471546$ |
$1$ |
|
$2$ |
$1824768$ |
$2.324429$ |
$727057727488000/37$ |
$1.08598$ |
$4.94565$ |
$[0, -1, 1, -8409393, 9389117874]$ |
\(y^2+y=x^3-x^2-8409393x+9389117874\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 201.8.0.?, $\ldots$ |
$[(2524, 65090)]$ |