| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 9100.a1 |
9100h1 |
9100.a |
9100h |
$1$ |
$1$ |
\( 2^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{8} \cdot 5^{2} \cdot 7^{4} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$26$ |
$2$ |
$0$ |
$0.136560985$ |
$1$ |
|
$8$ |
$6912$ |
$0.288498$ |
$70778880/31213$ |
$0.97825$ |
$2.94417$ |
$[0, 0, 0, -160, -380]$ |
\(y^2=x^3-160x-380\) |
26.2.0.a.1 |
$[(-4, 14)]$ |
$1$ |
| 9100.n1 |
9100j1 |
9100.n |
9100j |
$1$ |
$1$ |
\( 2^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{8} \cdot 5^{8} \cdot 7^{4} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$26$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$34560$ |
$1.093218$ |
$70778880/31213$ |
$0.97825$ |
$4.00347$ |
$[0, 0, 0, -4000, -47500]$ |
\(y^2=x^3-4000x-47500\) |
26.2.0.a.1 |
$[ ]$ |
$1$ |
| 36400.c1 |
36400cx1 |
36400.c |
36400cx |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{8} \cdot 5^{8} \cdot 7^{4} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$26$ |
$2$ |
$0$ |
$0.221530735$ |
$1$ |
|
$6$ |
$138240$ |
$1.093218$ |
$70778880/31213$ |
$0.97825$ |
$3.47502$ |
$[0, 0, 0, -4000, 47500]$ |
\(y^2=x^3-4000x+47500\) |
26.2.0.a.1 |
$[(-50, 350)]$ |
$1$ |
| 36400.cw1 |
36400bh1 |
36400.cw |
36400bh |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{8} \cdot 5^{2} \cdot 7^{4} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$26$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$27648$ |
$0.288498$ |
$70778880/31213$ |
$0.97825$ |
$2.55554$ |
$[0, 0, 0, -160, 380]$ |
\(y^2=x^3-160x+380\) |
26.2.0.a.1 |
$[ ]$ |
$1$ |
| 63700.a1 |
63700bp1 |
63700.a |
63700bp |
$1$ |
$1$ |
\( 2^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( 2^{8} \cdot 5^{8} \cdot 7^{10} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$26$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1658880$ |
$2.066174$ |
$70778880/31213$ |
$0.97825$ |
$4.35468$ |
$[0, 0, 0, -196000, 16292500]$ |
\(y^2=x^3-196000x+16292500\) |
26.2.0.a.1 |
$[ ]$ |
$1$ |
| 63700.bs1 |
63700bd1 |
63700.bs |
63700bd |
$1$ |
$1$ |
\( 2^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( 2^{8} \cdot 5^{2} \cdot 7^{10} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$26$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$331776$ |
$1.261454$ |
$70778880/31213$ |
$0.97825$ |
$3.48172$ |
$[0, 0, 0, -7840, 130340]$ |
\(y^2=x^3-7840x+130340\) |
26.2.0.a.1 |
$[ ]$ |
$1$ |
| 81900.x1 |
81900bj1 |
81900.x |
81900bj |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{8} \cdot 3^{6} \cdot 5^{8} \cdot 7^{4} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$26$ |
$2$ |
$0$ |
$2.772082522$ |
$1$ |
|
$2$ |
$483840$ |
$1.642523$ |
$70778880/31213$ |
$0.97825$ |
$3.80858$ |
$[0, 0, 0, -36000, 1282500]$ |
\(y^2=x^3-36000x+1282500\) |
26.2.0.a.1 |
$[(-164, 1666)]$ |
$1$ |
| 81900.br1 |
81900z1 |
81900.br |
81900z |
$1$ |
$1$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{8} \cdot 3^{6} \cdot 5^{2} \cdot 7^{4} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$26$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$96768$ |
$0.837805$ |
$70778880/31213$ |
$0.97825$ |
$2.95501$ |
$[0, 0, 0, -1440, 10260]$ |
\(y^2=x^3-1440x+10260\) |
26.2.0.a.1 |
$[ ]$ |
$1$ |
| 118300.c1 |
118300l1 |
118300.c |
118300l |
$1$ |
$1$ |
\( 2^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( 2^{8} \cdot 5^{2} \cdot 7^{4} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$26$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1161216$ |
$1.570972$ |
$70778880/31213$ |
$0.97825$ |
$3.61518$ |
$[0, 0, 0, -27040, -834860]$ |
\(y^2=x^3-27040x-834860\) |
26.2.0.a.1 |
$[ ]$ |
$1$ |
| 118300.bp1 |
118300bn1 |
118300.bp |
118300bn |
$1$ |
$1$ |
\( 2^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( 2^{8} \cdot 5^{8} \cdot 7^{4} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$26$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5806080$ |
$2.375690$ |
$70778880/31213$ |
$0.97825$ |
$4.44187$ |
$[0, 0, 0, -676000, -104357500]$ |
\(y^2=x^3-676000x-104357500\) |
26.2.0.a.1 |
$[ ]$ |
$1$ |
| 145600.a1 |
145600d1 |
145600.a |
145600d |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{14} \cdot 5^{2} \cdot 7^{4} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$26$ |
$2$ |
$0$ |
$1.314928246$ |
$1$ |
|
$2$ |
$221184$ |
$0.635072$ |
$70778880/31213$ |
$0.97825$ |
$2.60737$ |
$[0, 0, 0, -640, 3040]$ |
\(y^2=x^3-640x+3040\) |
26.2.0.a.1 |
$[(1, 49)]$ |
$1$ |
| 145600.g1 |
145600dw1 |
145600.g |
145600dw |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{14} \cdot 5^{8} \cdot 7^{4} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$26$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1105920$ |
$1.439791$ |
$70778880/31213$ |
$0.97825$ |
$3.41963$ |
$[0, 0, 0, -16000, -380000]$ |
\(y^2=x^3-16000x-380000\) |
26.2.0.a.1 |
$[ ]$ |
$1$ |
| 145600.hz1 |
145600do1 |
145600.hz |
145600do |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{14} \cdot 5^{8} \cdot 7^{4} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$26$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1105920$ |
$1.439791$ |
$70778880/31213$ |
$0.97825$ |
$3.41963$ |
$[0, 0, 0, -16000, 380000]$ |
\(y^2=x^3-16000x+380000\) |
26.2.0.a.1 |
$[ ]$ |
$1$ |
| 145600.if1 |
145600id1 |
145600.if |
145600id |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{14} \cdot 5^{2} \cdot 7^{4} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$26$ |
$2$ |
$0$ |
$4.111092009$ |
$1$ |
|
$0$ |
$221184$ |
$0.635072$ |
$70778880/31213$ |
$0.97825$ |
$2.60737$ |
$[0, 0, 0, -640, -3040]$ |
\(y^2=x^3-640x-3040\) |
26.2.0.a.1 |
$[(-191/3, 847/3)]$ |
$1$ |
| 254800.j1 |
254800j1 |
254800.j |
254800j |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( 2^{8} \cdot 5^{2} \cdot 7^{10} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$26$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1327104$ |
$1.261454$ |
$70778880/31213$ |
$0.97825$ |
$3.09398$ |
$[0, 0, 0, -7840, -130340]$ |
\(y^2=x^3-7840x-130340\) |
26.2.0.a.1 |
$[ ]$ |
$1$ |
| 254800.hs1 |
254800hs1 |
254800.hs |
254800hs |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( 2^{8} \cdot 5^{8} \cdot 7^{10} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$26$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$6635520$ |
$2.066174$ |
$70778880/31213$ |
$0.97825$ |
$3.86972$ |
$[0, 0, 0, -196000, -16292500]$ |
\(y^2=x^3-196000x-16292500\) |
26.2.0.a.1 |
$[ ]$ |
$1$ |
| 327600.c1 |
327600c1 |
327600.c |
327600c |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{8} \cdot 3^{6} \cdot 5^{2} \cdot 7^{4} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$26$ |
$2$ |
$0$ |
$1.096474094$ |
$1$ |
|
$4$ |
$387072$ |
$0.837805$ |
$70778880/31213$ |
$0.97825$ |
$2.63244$ |
$[0, 0, 0, -1440, -10260]$ |
\(y^2=x^3-1440x-10260\) |
26.2.0.a.1 |
$[(-26, 98)]$ |
$1$ |
| 327600.hc1 |
327600hc1 |
327600.hc |
327600hc |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( 2^{8} \cdot 3^{6} \cdot 5^{8} \cdot 7^{4} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$26$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1935360$ |
$1.642523$ |
$70778880/31213$ |
$0.97825$ |
$3.39283$ |
$[0, 0, 0, -36000, -1282500]$ |
\(y^2=x^3-36000x-1282500\) |
26.2.0.a.1 |
$[ ]$ |
$1$ |
| 473200.a1 |
473200a1 |
473200.a |
473200a |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( 2^{8} \cdot 5^{8} \cdot 7^{4} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$26$ |
$2$ |
$0$ |
$1.078721069$ |
$1$ |
|
$4$ |
$23224320$ |
$2.375690$ |
$70778880/31213$ |
$0.97825$ |
$3.97064$ |
$[0, 0, 0, -676000, 104357500]$ |
\(y^2=x^3-676000x+104357500\) |
26.2.0.a.1 |
$[(-286, 16562)]$ |
$1$ |
| 473200.hy1 |
473200hy1 |
473200.hy |
473200hy |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( 2^{8} \cdot 5^{2} \cdot 7^{4} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$26$ |
$2$ |
$0$ |
$2.522762624$ |
$1$ |
|
$0$ |
$4644864$ |
$1.570972$ |
$70778880/31213$ |
$0.97825$ |
$3.23165$ |
$[0, 0, 0, -27040, 834860]$ |
\(y^2=x^3-27040x+834860\) |
26.2.0.a.1 |
$[(286/3, 2366/3)]$ |
$1$ |