Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
1976.a1 |
1976a1 |
1976.a |
1976a |
$1$ |
$1$ |
\( 2^{3} \cdot 13 \cdot 19 \) |
\( - 2^{4} \cdot 13 \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$0.487827471$ |
$1$ |
|
$4$ |
$80$ |
$-0.629915$ |
$6912/247$ |
$0.75459$ |
$2.07151$ |
$[0, 0, 0, 1, 3]$ |
\(y^2=x^3+x+3\) |
494.2.0.? |
$[(-1, 1)]$ |
3952.f1 |
3952b1 |
3952.f |
3952b |
$1$ |
$1$ |
\( 2^{4} \cdot 13 \cdot 19 \) |
\( - 2^{4} \cdot 13 \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$160$ |
$-0.629915$ |
$6912/247$ |
$0.75459$ |
$1.89814$ |
$[0, 0, 0, 1, -3]$ |
\(y^2=x^3+x-3\) |
494.2.0.? |
$[ ]$ |
15808.k1 |
15808q1 |
15808.k |
15808q |
$1$ |
$1$ |
\( 2^{6} \cdot 13 \cdot 19 \) |
\( - 2^{10} \cdot 13 \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$1.951617990$ |
$1$ |
|
$2$ |
$1280$ |
$-0.283341$ |
$6912/247$ |
$0.75459$ |
$2.05613$ |
$[0, 0, 0, 4, -24]$ |
\(y^2=x^3+4x-24\) |
494.2.0.? |
$[(5, 11)]$ |
15808.n1 |
15808l1 |
15808.n |
15808l |
$1$ |
$1$ |
\( 2^{6} \cdot 13 \cdot 19 \) |
\( - 2^{10} \cdot 13 \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$2.007348176$ |
$1$ |
|
$2$ |
$1280$ |
$-0.283341$ |
$6912/247$ |
$0.75459$ |
$2.05613$ |
$[0, 0, 0, 4, 24]$ |
\(y^2=x^3+4x+24\) |
494.2.0.? |
$[(5, 13)]$ |
17784.d1 |
17784m1 |
17784.d |
17784m |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19 \) |
\( - 2^{4} \cdot 3^{6} \cdot 13 \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$1.039505834$ |
$1$ |
|
$2$ |
$2560$ |
$-0.080609$ |
$6912/247$ |
$0.75459$ |
$2.27998$ |
$[0, 0, 0, 9, -81]$ |
\(y^2=x^3+9x-81\) |
494.2.0.? |
$[(9, 27)]$ |
25688.f1 |
25688h1 |
25688.f |
25688h |
$1$ |
$1$ |
\( 2^{3} \cdot 13^{2} \cdot 19 \) |
\( - 2^{4} \cdot 13^{7} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$0.552880242$ |
$1$ |
|
$2$ |
$13440$ |
$0.652559$ |
$6912/247$ |
$0.75459$ |
$3.06389$ |
$[0, 0, 0, 169, 6591]$ |
\(y^2=x^3+169x+6591\) |
494.2.0.? |
$[(26, 169)]$ |
35568.j1 |
35568n1 |
35568.j |
35568n |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 13 \cdot 19 \) |
\( - 2^{4} \cdot 3^{6} \cdot 13 \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$0.829893529$ |
$1$ |
|
$4$ |
$5120$ |
$-0.080609$ |
$6912/247$ |
$0.75459$ |
$2.12917$ |
$[0, 0, 0, 9, 81]$ |
\(y^2=x^3+9x+81\) |
494.2.0.? |
$[(0, 9)]$ |
37544.i1 |
37544k1 |
37544.i |
37544k |
$1$ |
$1$ |
\( 2^{3} \cdot 13 \cdot 19^{2} \) |
\( - 2^{4} \cdot 13 \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$28800$ |
$0.842304$ |
$6912/247$ |
$0.75459$ |
$3.16967$ |
$[0, 0, 0, 361, -20577]$ |
\(y^2=x^3+361x-20577\) |
494.2.0.? |
$[ ]$ |
49400.p1 |
49400t1 |
49400.p |
49400t |
$1$ |
$1$ |
\( 2^{3} \cdot 5^{2} \cdot 13 \cdot 19 \) |
\( - 2^{4} \cdot 5^{6} \cdot 13 \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$0.613377494$ |
$1$ |
|
$4$ |
$10240$ |
$0.174804$ |
$6912/247$ |
$0.75459$ |
$2.34805$ |
$[0, 0, 0, 25, 375]$ |
\(y^2=x^3+25x+375\) |
494.2.0.? |
$[(5, 25)]$ |
51376.n1 |
51376b1 |
51376.n |
51376b |
$1$ |
$1$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( - 2^{4} \cdot 13^{7} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$1.603746678$ |
$1$ |
|
$0$ |
$26880$ |
$0.652559$ |
$6912/247$ |
$0.75459$ |
$2.86810$ |
$[0, 0, 0, 169, -6591]$ |
\(y^2=x^3+169x-6591\) |
494.2.0.? |
$[(65/2, 169/2)]$ |
75088.t1 |
75088i1 |
75088.t |
75088i |
$1$ |
$1$ |
\( 2^{4} \cdot 13 \cdot 19^{2} \) |
\( - 2^{4} \cdot 13 \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$2.480823879$ |
$1$ |
|
$2$ |
$57600$ |
$0.842304$ |
$6912/247$ |
$0.75459$ |
$2.97397$ |
$[0, 0, 0, 361, 20577]$ |
\(y^2=x^3+361x+20577\) |
494.2.0.? |
$[(456, 9747)]$ |
96824.g1 |
96824e1 |
96824.g |
96824e |
$1$ |
$1$ |
\( 2^{3} \cdot 7^{2} \cdot 13 \cdot 19 \) |
\( - 2^{4} \cdot 7^{6} \cdot 13 \cdot 19 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$2.804402743$ |
$1$ |
|
$10$ |
$28800$ |
$0.343040$ |
$6912/247$ |
$0.75459$ |
$2.38626$ |
$[0, 0, 0, 49, -1029]$ |
\(y^2=x^3+49x-1029\) |
494.2.0.? |
$[(14, 49), (11, 29)]$ |
98800.bv1 |
98800q1 |
98800.bv |
98800q |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 13 \cdot 19 \) |
\( - 2^{4} \cdot 5^{6} \cdot 13 \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$4.172307894$ |
$1$ |
|
$2$ |
$20480$ |
$0.174804$ |
$6912/247$ |
$0.75459$ |
$2.20653$ |
$[0, 0, 0, 25, -375]$ |
\(y^2=x^3+25x-375\) |
494.2.0.? |
$[(320, 5725)]$ |
142272.fe1 |
142272bu1 |
142272.fe |
142272bu |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 13 \cdot 19 \) |
\( - 2^{10} \cdot 3^{6} \cdot 13 \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$40960$ |
$0.265965$ |
$6912/247$ |
$0.75459$ |
$2.23092$ |
$[0, 0, 0, 36, 648]$ |
\(y^2=x^3+36x+648\) |
494.2.0.? |
$[ ]$ |
142272.fl1 |
142272fg1 |
142272.fl |
142272fg |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 13 \cdot 19 \) |
\( - 2^{10} \cdot 3^{6} \cdot 13 \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$40960$ |
$0.265965$ |
$6912/247$ |
$0.75459$ |
$2.23092$ |
$[0, 0, 0, 36, -648]$ |
\(y^2=x^3+36x-648\) |
494.2.0.? |
$[ ]$ |
193648.w1 |
193648bn1 |
193648.w |
193648bn |
$1$ |
$1$ |
\( 2^{4} \cdot 7^{2} \cdot 13 \cdot 19 \) |
\( - 2^{4} \cdot 7^{6} \cdot 13 \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$2.207706105$ |
$1$ |
|
$0$ |
$57600$ |
$0.343040$ |
$6912/247$ |
$0.75459$ |
$2.25039$ |
$[0, 0, 0, 49, 1029]$ |
\(y^2=x^3+49x+1029\) |
494.2.0.? |
$[(-7/2, 245/2)]$ |
205504.bn1 |
205504cg1 |
205504.bn |
205504cg |
$1$ |
$1$ |
\( 2^{6} \cdot 13^{2} \cdot 19 \) |
\( - 2^{10} \cdot 13^{7} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$4.242189317$ |
$1$ |
|
$2$ |
$215040$ |
$0.999133$ |
$6912/247$ |
$0.75459$ |
$2.88305$ |
$[0, 0, 0, 676, 52728]$ |
\(y^2=x^3+676x+52728\) |
494.2.0.? |
$[(29, 311)]$ |
205504.bq1 |
205504s1 |
205504.bq |
205504s |
$1$ |
$1$ |
\( 2^{6} \cdot 13^{2} \cdot 19 \) |
\( - 2^{10} \cdot 13^{7} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$12.91719182$ |
$1$ |
|
$0$ |
$215040$ |
$0.999133$ |
$6912/247$ |
$0.75459$ |
$2.88305$ |
$[0, 0, 0, 676, -52728]$ |
\(y^2=x^3+676x-52728\) |
494.2.0.? |
$[(348461/49, 207219767/49)]$ |
231192.bk1 |
231192bk1 |
231192.bk |
231192bk |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 13^{2} \cdot 19 \) |
\( - 2^{4} \cdot 3^{6} \cdot 13^{7} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$1.323245519$ |
$1$ |
|
$2$ |
$430080$ |
$1.201866$ |
$6912/247$ |
$0.75459$ |
$3.05252$ |
$[0, 0, 0, 1521, -177957]$ |
\(y^2=x^3+1521x-177957\) |
494.2.0.? |
$[(91, 845)]$ |
239096.i1 |
239096i1 |
239096.i |
239096i |
$1$ |
$1$ |
\( 2^{3} \cdot 11^{2} \cdot 13 \cdot 19 \) |
\( - 2^{4} \cdot 11^{6} \cdot 13 \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$2.643336908$ |
$1$ |
|
$2$ |
$86400$ |
$0.569033$ |
$6912/247$ |
$0.75459$ |
$2.43106$ |
$[0, 0, 0, 121, -3993]$ |
\(y^2=x^3+121x-3993\) |
494.2.0.? |
$[(209, 3025)]$ |
300352.bi1 |
300352bi1 |
300352.bi |
300352bi |
$1$ |
$1$ |
\( 2^{6} \cdot 13 \cdot 19^{2} \) |
\( - 2^{10} \cdot 13 \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$1.513555757$ |
$1$ |
|
$2$ |
$460800$ |
$1.188877$ |
$6912/247$ |
$0.75459$ |
$2.97683$ |
$[0, 0, 0, 1444, 164616]$ |
\(y^2=x^3+1444x+164616\) |
494.2.0.? |
$[(-19, 361)]$ |
300352.bn1 |
300352bn1 |
300352.bn |
300352bn |
$1$ |
$1$ |
\( 2^{6} \cdot 13 \cdot 19^{2} \) |
\( - 2^{10} \cdot 13 \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$460800$ |
$1.188877$ |
$6912/247$ |
$0.75459$ |
$2.97683$ |
$[0, 0, 0, 1444, -164616]$ |
\(y^2=x^3+1444x-164616\) |
494.2.0.? |
$[ ]$ |
337896.k1 |
337896k1 |
337896.k |
337896k |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) |
\( - 2^{4} \cdot 3^{6} \cdot 13 \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$921600$ |
$1.391611$ |
$6912/247$ |
$0.75459$ |
$3.14039$ |
$[0, 0, 0, 3249, 555579]$ |
\(y^2=x^3+3249x+555579\) |
494.2.0.? |
$[ ]$ |
395200.dm1 |
395200dm1 |
395200.dm |
395200dm |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \cdot 19 \) |
\( - 2^{10} \cdot 5^{6} \cdot 13 \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$163840$ |
$0.521378$ |
$6912/247$ |
$0.75459$ |
$2.29189$ |
$[0, 0, 0, 100, 3000]$ |
\(y^2=x^3+100x+3000\) |
494.2.0.? |
$[ ]$ |
395200.ep1 |
395200ep1 |
395200.ep |
395200ep |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \cdot 19 \) |
\( - 2^{10} \cdot 5^{6} \cdot 13 \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$163840$ |
$0.521378$ |
$6912/247$ |
$0.75459$ |
$2.29189$ |
$[0, 0, 0, 100, -3000]$ |
\(y^2=x^3+100x-3000\) |
494.2.0.? |
$[ ]$ |
444600.bm1 |
444600bm1 |
444600.bm |
444600bm |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 19 \) |
\( - 2^{4} \cdot 3^{6} \cdot 5^{6} \cdot 13 \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$1.947168428$ |
$1$ |
|
$2$ |
$327680$ |
$0.724110$ |
$6912/247$ |
$0.75459$ |
$2.45820$ |
$[0, 0, 0, 225, -10125]$ |
\(y^2=x^3+225x-10125\) |
494.2.0.? |
$[(135, 1575)]$ |
462384.ex1 |
462384ex1 |
462384.ex |
462384ex |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 13^{2} \cdot 19 \) |
\( - 2^{4} \cdot 3^{6} \cdot 13^{7} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$860160$ |
$1.201866$ |
$6912/247$ |
$0.75459$ |
$2.89032$ |
$[0, 0, 0, 1521, 177957]$ |
\(y^2=x^3+1521x+177957\) |
494.2.0.? |
$[ ]$ |
478192.bn1 |
478192bn1 |
478192.bn |
478192bn |
$1$ |
$1$ |
\( 2^{4} \cdot 11^{2} \cdot 13 \cdot 19 \) |
\( - 2^{4} \cdot 11^{6} \cdot 13 \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$5.548796529$ |
$1$ |
|
$2$ |
$172800$ |
$0.569033$ |
$6912/247$ |
$0.75459$ |
$2.30221$ |
$[0, 0, 0, 121, 3993]$ |
\(y^2=x^3+121x+3993\) |
494.2.0.? |
$[(2816, 149435)]$ |
488072.n1 |
488072n1 |
488072.n |
488072n |
$1$ |
$1$ |
\( 2^{3} \cdot 13^{2} \cdot 19^{2} \) |
\( - 2^{4} \cdot 13^{7} \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4838400$ |
$2.124779$ |
$6912/247$ |
$0.75459$ |
$3.72392$ |
$[0, 0, 0, 61009, -45207669]$ |
\(y^2=x^3+61009x-45207669\) |
494.2.0.? |
$[ ]$ |