| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 13260.m1 |
13260p2 |
13260.m |
13260p |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{8} \cdot 3^{5} \cdot 5^{8} \cdot 13^{2} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2652$ |
$12$ |
$0$ |
$0.238219241$ |
$1$ |
|
$13$ |
$46080$ |
$1.421381$ |
$6541847063933776/272710546875$ |
$0.91428$ |
$4.42056$ |
$[0, 1, 0, -24740, -1451100]$ |
\(y^2=x^3+x^2-24740x-1451100\) |
2.3.0.a.1, 52.6.0.c.1, 204.6.0.?, 2652.12.0.? |
$[(-80, 150)]$ |
| 39780.b1 |
39780m2 |
39780.b |
39780m |
$2$ |
$2$ |
\( 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{8} \cdot 3^{11} \cdot 5^{8} \cdot 13^{2} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2652$ |
$12$ |
$0$ |
$4.965671127$ |
$1$ |
|
$3$ |
$368640$ |
$1.970688$ |
$6541847063933776/272710546875$ |
$0.91428$ |
$4.58439$ |
$[0, 0, 0, -222663, 38957038]$ |
\(y^2=x^3-222663x+38957038\) |
2.3.0.a.1, 52.6.0.c.1, 204.6.0.?, 2652.12.0.? |
$[(522, 8060)]$ |
| 53040.bj1 |
53040bw2 |
53040.bj |
53040bw |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{8} \cdot 3^{5} \cdot 5^{8} \cdot 13^{2} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2652$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$184320$ |
$1.421381$ |
$6541847063933776/272710546875$ |
$0.91428$ |
$3.85724$ |
$[0, -1, 0, -24740, 1451100]$ |
\(y^2=x^3-x^2-24740x+1451100\) |
2.3.0.a.1, 52.6.0.c.1, 204.6.0.?, 2652.12.0.? |
$[ ]$ |
| 66300.u1 |
66300j2 |
66300.u |
66300j |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5^{2} \cdot 13 \cdot 17 \) |
\( 2^{8} \cdot 3^{5} \cdot 5^{14} \cdot 13^{2} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2652$ |
$12$ |
$0$ |
$19.33263194$ |
$1$ |
|
$1$ |
$1105920$ |
$2.226101$ |
$6541847063933776/272710546875$ |
$0.91428$ |
$4.64953$ |
$[0, -1, 0, -618508, -180150488]$ |
\(y^2=x^3-x^2-618508x-180150488\) |
2.3.0.a.1, 52.6.0.c.1, 204.6.0.?, 2652.12.0.? |
$[(-251946699/754, 1111112585933/754)]$ |
| 159120.cg1 |
159120ce2 |
159120.cg |
159120ce |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{8} \cdot 3^{11} \cdot 5^{8} \cdot 13^{2} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2652$ |
$12$ |
$0$ |
$9.856216656$ |
$1$ |
|
$3$ |
$1474560$ |
$1.970688$ |
$6541847063933776/272710546875$ |
$0.91428$ |
$4.05378$ |
$[0, 0, 0, -222663, -38957038]$ |
\(y^2=x^3-222663x-38957038\) |
2.3.0.a.1, 52.6.0.c.1, 204.6.0.?, 2652.12.0.? |
$[(206074, 93547818)]$ |
| 172380.y1 |
172380q2 |
172380.y |
172380q |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13^{2} \cdot 17 \) |
\( 2^{8} \cdot 3^{5} \cdot 5^{8} \cdot 13^{8} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2652$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$7741440$ |
$2.703857$ |
$6541847063933776/272710546875$ |
$0.91428$ |
$4.75655$ |
$[0, 1, 0, -4181116, -3171342316]$ |
\(y^2=x^3+x^2-4181116x-3171342316\) |
2.3.0.a.1, 52.6.0.c.1, 204.6.0.?, 2652.12.0.? |
$[ ]$ |
| 198900.ck1 |
198900ca2 |
198900.ck |
198900ca |
$2$ |
$2$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 17 \) |
\( 2^{8} \cdot 3^{11} \cdot 5^{14} \cdot 13^{2} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2652$ |
$12$ |
$0$ |
$2.366531392$ |
$1$ |
|
$3$ |
$8847360$ |
$2.775406$ |
$6541847063933776/272710546875$ |
$0.91428$ |
$4.77113$ |
$[0, 0, 0, -5566575, 4869629750]$ |
\(y^2=x^3-5566575x+4869629750\) |
2.3.0.a.1, 52.6.0.c.1, 204.6.0.?, 2652.12.0.? |
$[(835, 28350)]$ |
| 212160.c1 |
212160hb2 |
212160.c |
212160hb |
$2$ |
$2$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{14} \cdot 3^{5} \cdot 5^{8} \cdot 13^{2} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2652$ |
$12$ |
$0$ |
$3.171084497$ |
$1$ |
|
$5$ |
$1474560$ |
$1.767956$ |
$6541847063933776/272710546875$ |
$0.91428$ |
$3.76035$ |
$[0, -1, 0, -98961, -11509839]$ |
\(y^2=x^3-x^2-98961x-11509839\) |
2.3.0.a.1, 52.6.0.c.1, 204.6.0.?, 2652.12.0.? |
$[(416, 4375)]$ |
| 212160.fs1 |
212160by2 |
212160.fs |
212160by |
$2$ |
$2$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{14} \cdot 3^{5} \cdot 5^{8} \cdot 13^{2} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2652$ |
$12$ |
$0$ |
$2.746268386$ |
$1$ |
|
$3$ |
$1474560$ |
$1.767956$ |
$6541847063933776/272710546875$ |
$0.91428$ |
$3.76035$ |
$[0, 1, 0, -98961, 11509839]$ |
\(y^2=x^3+x^2-98961x+11509839\) |
2.3.0.a.1, 52.6.0.c.1, 204.6.0.?, 2652.12.0.? |
$[(417, 6552)]$ |
| 225420.h1 |
225420bp2 |
225420.h |
225420bp |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) |
\( 2^{8} \cdot 3^{5} \cdot 5^{8} \cdot 13^{2} \cdot 17^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2652$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$13271040$ |
$2.837990$ |
$6541847063933776/272710546875$ |
$0.91428$ |
$4.78361$ |
$[0, -1, 0, -7149956, -7086354744]$ |
\(y^2=x^3-x^2-7149956x-7086354744\) |
2.3.0.a.1, 52.6.0.c.1, 204.6.0.?, 2652.12.0.? |
$[ ]$ |
| 265200.dw1 |
265200dw2 |
265200.dw |
265200dw |
$2$ |
$2$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13 \cdot 17 \) |
\( 2^{8} \cdot 3^{5} \cdot 5^{14} \cdot 13^{2} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2652$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$4423680$ |
$2.226101$ |
$6541847063933776/272710546875$ |
$0.91428$ |
$4.13339$ |
$[0, 1, 0, -618508, 180150488]$ |
\(y^2=x^3+x^2-618508x+180150488\) |
2.3.0.a.1, 52.6.0.c.1, 204.6.0.?, 2652.12.0.? |
$[ ]$ |