Learn more

Refine search


Results (22 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
11424.g4 11424.g \( 2^{5} \cdot 3 \cdot 7 \cdot 17 \) $1$ $\Z/2\Z$ $6.057254069$ $[0, -1, 0, 623, 10465]$ \(y^2=x^3-x^2+623x+10465\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 28.12.0-4.c.1.1, 84.24.0.?, $\ldots$ $[(-261/5, 6512/5)]$
11424.v4 11424.v \( 2^{5} \cdot 3 \cdot 7 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 623, -10465]$ \(y^2=x^3+x^2+623x-10465\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 28.12.0-4.c.1.2, 84.24.0.?, $\ldots$ $[ ]$
22848.m4 22848.m \( 2^{6} \cdot 3 \cdot 7 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 156, -1386]$ \(y^2=x^3-x^2+156x-1386\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.1, 56.12.0-4.c.1.1, 84.12.0.?, $\ldots$ $[ ]$
22848.bq4 22848.bq \( 2^{6} \cdot 3 \cdot 7 \cdot 17 \) $2$ $\Z/2\Z$ $4.807066069$ $[0, 1, 0, 156, 1386]$ \(y^2=x^3+x^2+156x+1386\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.2, 56.12.0-4.c.1.2, 84.12.0.?, $\ldots$ $[(-3, 30), (9, 60)]$
34272.f4 34272.f \( 2^{5} \cdot 3^{2} \cdot 7 \cdot 17 \) $0$ $\Z/4\Z$ $1$ $[0, 0, 0, 5604, -288160]$ \(y^2=x^3+5604x-288160\) 2.3.0.a.1, 4.12.0-4.c.1.1, 84.24.0.?, 408.24.0.?, 952.24.0.?, $\ldots$ $[ ]$
34272.n4 34272.n \( 2^{5} \cdot 3^{2} \cdot 7 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 5604, 288160]$ \(y^2=x^3+5604x+288160\) 2.3.0.a.1, 4.12.0-4.c.1.2, 84.24.0.?, 408.24.0.?, 952.24.0.?, $\ldots$ $[ ]$
68544.dv4 68544.dv \( 2^{6} \cdot 3^{2} \cdot 7 \cdot 17 \) $1$ $\Z/2\Z$ $8.459146387$ $[0, 0, 0, 1401, -36020]$ \(y^2=x^3+1401x-36020\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 84.12.0.?, 168.24.0.?, $\ldots$ $[(11801/10, 1331451/10)]$
68544.dz4 68544.dz \( 2^{6} \cdot 3^{2} \cdot 7 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 1401, 36020]$ \(y^2=x^3+1401x+36020\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 84.12.0.?, 168.24.0.?, $\ldots$ $[ ]$
79968.f4 79968.f \( 2^{5} \cdot 3 \cdot 7^{2} \cdot 17 \) $0$ $\Z/4\Z$ $1$ $[0, -1, 0, 30511, 3650529]$ \(y^2=x^3-x^2+30511x+3650529\) 2.3.0.a.1, 4.12.0-4.c.1.1, 84.24.0.?, 408.24.0.?, 952.24.0.?, $\ldots$ $[ ]$
79968.bv4 79968.bv \( 2^{5} \cdot 3 \cdot 7^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 30511, -3650529]$ \(y^2=x^3+x^2+30511x-3650529\) 2.3.0.a.1, 4.12.0-4.c.1.2, 84.24.0.?, 408.24.0.?, 952.24.0.?, $\ldots$ $[ ]$
159936.dw4 159936.dw \( 2^{6} \cdot 3 \cdot 7^{2} \cdot 17 \) $1$ $\Z/2\Z$ $10.79487937$ $[0, -1, 0, 7628, -460130]$ \(y^2=x^3-x^2+7628x-460130\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 84.12.0.?, 168.24.0.?, $\ldots$ $[(30483/17, 6030830/17)]$
159936.ju4 159936.ju \( 2^{6} \cdot 3 \cdot 7^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 7628, 460130]$ \(y^2=x^3+x^2+7628x+460130\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 84.12.0.?, 168.24.0.?, $\ldots$ $[ ]$
194208.f4 194208.f \( 2^{5} \cdot 3 \cdot 7 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 179951, -52494431]$ \(y^2=x^3-x^2+179951x-52494431\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 84.12.0.?, 168.24.0.?, $\ldots$ $[ ]$
194208.bq4 194208.bq \( 2^{5} \cdot 3 \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $7.344972003$ $[0, 1, 0, 179951, 52494431]$ \(y^2=x^3+x^2+179951x+52494431\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 84.12.0.?, 168.24.0.?, $\ldots$ $[(6173, 486240)]$
239904.cw4 239904.cw \( 2^{5} \cdot 3^{2} \cdot 7^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 274596, 98838880]$ \(y^2=x^3+274596x+98838880\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 28.12.0-4.c.1.2, 84.24.0.?, $\ldots$ $[ ]$
239904.di4 239904.di \( 2^{5} \cdot 3^{2} \cdot 7^{2} \cdot 17 \) $1$ $\Z/2\Z$ $4.745358379$ $[0, 0, 0, 274596, -98838880]$ \(y^2=x^3+274596x-98838880\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 28.12.0-4.c.1.1, 84.24.0.?, $\ldots$ $[(152005, 59263785)]$
285600.g4 285600.g \( 2^{5} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17 \) $2$ $\Z/2\Z$ $5.393885793$ $[0, -1, 0, 15567, -1339263]$ \(y^2=x^3-x^2+15567x-1339263\) 2.3.0.a.1, 4.6.0.c.1, 60.12.0-4.c.1.1, 84.12.0.?, 140.12.0.?, $\ldots$ $[(407, 8500), (832, 24225)]$
285600.ge4 285600.ge \( 2^{5} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17 \) $1$ $\Z/2\Z$ $0.755288475$ $[0, 1, 0, 15567, 1339263]$ \(y^2=x^3+x^2+15567x+1339263\) 2.3.0.a.1, 4.6.0.c.1, 60.12.0-4.c.1.2, 84.12.0.?, 140.12.0.?, $\ldots$ $[(18, 1275)]$
388416.dp4 388416.dp \( 2^{6} \cdot 3 \cdot 7 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 44988, 6539310]$ \(y^2=x^3-x^2+44988x+6539310\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 84.12.0.?, 168.24.0.?, $\ldots$ $[ ]$
388416.hg4 388416.hg \( 2^{6} \cdot 3 \cdot 7 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 44988, -6539310]$ \(y^2=x^3+x^2+44988x-6539310\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 84.12.0.?, 168.24.0.?, $\ldots$ $[ ]$
479808.dh4 479808.dh \( 2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 17 \) $1$ $\Z/2\Z$ $4.584085399$ $[0, 0, 0, 68649, -12354860]$ \(y^2=x^3+68649x-12354860\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.2, 56.12.0-4.c.1.2, 84.12.0.?, $\ldots$ $[(1904, 83790)]$
479808.ew4 479808.ew \( 2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 17 \) $1$ $\Z/2\Z$ $9.223924876$ $[0, 0, 0, 68649, 12354860]$ \(y^2=x^3+68649x+12354860\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.1, 56.12.0-4.c.1.1, 84.12.0.?, $\ldots$ $[(69496/3, 18331390/3)]$
  displayed columns for results