Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
49818.d2 |
49818d1 |
49818.d |
49818d |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 19^{2} \cdot 23 \) |
\( 2^{3} \cdot 3^{15} \cdot 19^{2} \cdot 23^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$10488$ |
$16$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$207360$ |
$1.609385$ |
$63964821056640625/1396665211752$ |
$1.07792$ |
$4.12218$ |
$[1, 1, 0, -59325, -5480523]$ |
\(y^2+xy=x^3+x^2-59325x-5480523\) |
3.4.0.a.1, 57.8.0-3.a.1.1, 552.8.0.?, 10488.16.0.? |
$[ ]$ |
49818.bf2 |
49818bc1 |
49818.bf |
49818bc |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 19^{2} \cdot 23 \) |
\( 2^{3} \cdot 3^{15} \cdot 19^{8} \cdot 23^{3} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$552$ |
$16$ |
$0$ |
$6.971063734$ |
$1$ |
|
$4$ |
$3939840$ |
$3.081604$ |
$63964821056640625/1396665211752$ |
$1.07792$ |
$5.75553$ |
$[1, 0, 0, -21416513, 37419575649]$ |
\(y^2+xy=x^3-21416513x+37419575649\) |
3.8.0-3.a.1.2, 552.16.0.? |
$[(42196, 8596573)]$ |
149454.x2 |
149454cc1 |
149454.x |
149454cc |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 19^{2} \cdot 23 \) |
\( 2^{3} \cdot 3^{21} \cdot 19^{8} \cdot 23^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$552$ |
$16$ |
$0$ |
$4.165356700$ |
$1$ |
|
$0$ |
$31518720$ |
$3.630909$ |
$63964821056640625/1396665211752$ |
$1.07792$ |
$5.77808$ |
$[1, -1, 0, -192748617, -1010328542523]$ |
\(y^2+xy=x^3-x^2-192748617x-1010328542523\) |
3.8.0-3.a.1.1, 552.16.0.? |
$[(-32489/2, 1145091/2)]$ |
149454.cg2 |
149454r1 |
149454.cg |
149454r |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 19^{2} \cdot 23 \) |
\( 2^{3} \cdot 3^{21} \cdot 19^{2} \cdot 23^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$10488$ |
$16$ |
$0$ |
$2.301938024$ |
$1$ |
|
$2$ |
$1658880$ |
$2.158691$ |
$63964821056640625/1396665211752$ |
$1.07792$ |
$4.29532$ |
$[1, -1, 1, -533930, 147440193]$ |
\(y^2+xy+y=x^3-x^2-533930x+147440193\) |
3.4.0.a.1, 57.8.0-3.a.1.2, 552.8.0.?, 10488.16.0.? |
$[(491, 1617)]$ |
398544.s2 |
398544s1 |
398544.s |
398544s |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 19^{2} \cdot 23 \) |
\( 2^{15} \cdot 3^{15} \cdot 19^{8} \cdot 23^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$552$ |
$16$ |
$0$ |
$11.44075978$ |
$1$ |
|
$0$ |
$94556160$ |
$3.774754$ |
$63964821056640625/1396665211752$ |
$1.07792$ |
$5.47245$ |
$[0, -1, 0, -342664208, -2394852841536]$ |
\(y^2=x^3-x^2-342664208x-2394852841536\) |
3.4.0.a.1, 12.8.0-3.a.1.1, 552.16.0.? |
$[(-1954406/13, 319454498/13)]$ |
398544.bz2 |
398544bz1 |
398544.bz |
398544bz |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 19^{2} \cdot 23 \) |
\( 2^{15} \cdot 3^{15} \cdot 19^{2} \cdot 23^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$10488$ |
$16$ |
$0$ |
$0.361948024$ |
$1$ |
|
$6$ |
$4976640$ |
$2.302532$ |
$63964821056640625/1396665211752$ |
$1.07792$ |
$4.10247$ |
$[0, 1, 0, -949208, 348855060]$ |
\(y^2=x^3+x^2-949208x+348855060\) |
3.4.0.a.1, 228.8.0.?, 552.8.0.?, 10488.16.0.? |
$[(1252, 33534)]$ |