| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 9555.h1 |
9555h1 |
9555.h |
9555h |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 3^{5} \cdot 5 \cdot 7^{2} \cdot 13^{13} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$241800$ |
$2.384338$ |
$633814853024541310976/367993254509587395$ |
$1.14870$ |
$5.65097$ |
$[0, -1, 1, 654855, -11895892]$ |
\(y^2+y=x^3-x^2+654855x-11895892\) |
390.2.0.? |
$[ ]$ |
| 9555.j1 |
9555n1 |
9555.j |
9555n |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 3^{5} \cdot 5 \cdot 7^{8} \cdot 13^{13} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1692600$ |
$3.357292$ |
$633814853024541310976/367993254509587395$ |
$1.14870$ |
$6.92491$ |
$[0, 1, 1, 32087879, 4016115100]$ |
\(y^2+y=x^3+x^2+32087879x+4016115100\) |
390.2.0.? |
$[ ]$ |
| 28665.x1 |
28665z1 |
28665.x |
28665z |
$1$ |
$1$ |
\( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 3^{11} \cdot 5 \cdot 7^{2} \cdot 13^{13} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1934400$ |
$2.933643$ |
$633814853024541310976/367993254509587395$ |
$1.14870$ |
$5.68833$ |
$[0, 0, 1, 5893692, 315295384]$ |
\(y^2+y=x^3+5893692x+315295384\) |
390.2.0.? |
$[ ]$ |
| 28665.bc1 |
28665bi1 |
28665.bc |
28665bi |
$1$ |
$1$ |
\( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 3^{11} \cdot 5 \cdot 7^{8} \cdot 13^{13} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$14.31098185$ |
$1$ |
|
$0$ |
$13540800$ |
$3.906601$ |
$633814853024541310976/367993254509587395$ |
$1.14870$ |
$6.82591$ |
$[0, 0, 1, 288790908, -108146316798]$ |
\(y^2+y=x^3+288790908x-108146316798\) |
390.2.0.? |
$[(189123830/83, 3053069140811/83)]$ |
| 47775.bq1 |
47775d1 |
47775.bq |
47775d |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 3^{5} \cdot 5^{7} \cdot 7^{8} \cdot 13^{13} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$40622400$ |
$4.162010$ |
$633814853024541310976/367993254509587395$ |
$1.14870$ |
$6.78675$ |
$[0, -1, 1, 802196967, 500409993593]$ |
\(y^2+y=x^3-x^2+802196967x+500409993593\) |
390.2.0.? |
$[ ]$ |
| 47775.cd1 |
47775bz1 |
47775.cd |
47775bz |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 3^{5} \cdot 5^{7} \cdot 7^{2} \cdot 13^{13} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$5.044030676$ |
$1$ |
|
$2$ |
$5803200$ |
$3.189056$ |
$633814853024541310976/367993254509587395$ |
$1.14870$ |
$5.70311$ |
$[0, 1, 1, 16371367, -1454243731]$ |
\(y^2+y=x^3+x^2+16371367x-1454243731\) |
390.2.0.? |
$[(643, 96637)]$ |
| 124215.bg1 |
124215b1 |
124215.bg |
124215b |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 3^{5} \cdot 5 \cdot 7^{2} \cdot 13^{19} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$40622400$ |
$3.666813$ |
$633814853024541310976/367993254509587395$ |
$1.14870$ |
$5.72729$ |
$[0, -1, 1, 110670439, -25692592339]$ |
\(y^2+y=x^3-x^2+110670439x-25692592339\) |
390.2.0.? |
$[ ]$ |
| 124215.ca1 |
124215cl1 |
124215.ca |
124215cl |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 3^{5} \cdot 5 \cdot 7^{8} \cdot 13^{19} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$26.15871932$ |
$1$ |
|
$0$ |
$284356800$ |
$4.639771$ |
$633814853024541310976/367993254509587395$ |
$1.14870$ |
$6.72266$ |
$[0, 1, 1, 5422851495, 8801713469189]$ |
\(y^2+y=x^3+x^2+5422851495x+8801713469189\) |
390.2.0.? |
$[(29370742120314897/130379, 5038102039229985582445598/130379)]$ |
| 143325.db1 |
143325dg1 |
143325.db |
143325dg |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 3^{11} \cdot 5^{7} \cdot 7^{2} \cdot 13^{13} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$23.64874831$ |
$1$ |
|
$0$ |
$46425600$ |
$3.738365$ |
$633814853024541310976/367993254509587395$ |
$1.14870$ |
$5.73058$ |
$[0, 0, 1, 147342300, 39411923031]$ |
\(y^2+y=x^3+147342300x+39411923031\) |
390.2.0.? |
$[(557830272785/7829, 701028964513386743/7829)]$ |
| 143325.dc1 |
143325dp1 |
143325.dc |
143325dp |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 3^{11} \cdot 5^{7} \cdot 7^{8} \cdot 13^{13} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$2.688854481$ |
$1$ |
|
$2$ |
$324979200$ |
$4.711319$ |
$633814853024541310976/367993254509587395$ |
$1.14870$ |
$6.71395$ |
$[0, 0, 1, 7219772700, -13518289599719]$ |
\(y^2+y=x^3+7219772700x-13518289599719\) |
390.2.0.? |
$[(60685, 25457737)]$ |
| 152880.bb1 |
152880fi1 |
152880.bb |
152880fi |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{12} \cdot 3^{5} \cdot 5 \cdot 7^{8} \cdot 13^{13} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$1$ |
$49$ |
$7$ |
$0$ |
$121867200$ |
$4.050438$ |
$633814853024541310976/367993254509587395$ |
$1.14870$ |
$6.01331$ |
$[0, -1, 0, 513406059, -256517960355]$ |
\(y^2=x^3-x^2+513406059x-256517960355\) |
390.2.0.? |
$[ ]$ |
| 152880.hs1 |
152880r1 |
152880.hs |
152880r |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{12} \cdot 3^{5} \cdot 5 \cdot 7^{2} \cdot 13^{13} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$17409600$ |
$3.077484$ |
$633814853024541310976/367993254509587395$ |
$1.14870$ |
$5.03525$ |
$[0, 1, 0, 10477675, 750859395]$ |
\(y^2=x^3+x^2+10477675x+750859395\) |
390.2.0.? |
$[ ]$ |
| 372645.cn1 |
372645cn1 |
372645.cn |
372645cn |
$1$ |
$1$ |
\( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 3^{11} \cdot 5 \cdot 7^{8} \cdot 13^{19} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$1$ |
$25$ |
$5$ |
$0$ |
$2274854400$ |
$5.189072$ |
$633814853024541310976/367993254509587395$ |
$1.14870$ |
$6.66077$ |
$[0, 0, 1, 48805663452, -237597458004657]$ |
\(y^2+y=x^3+48805663452x-237597458004657\) |
390.2.0.? |
$[ ]$ |
| 372645.db1 |
372645db1 |
372645.db |
372645db |
$1$ |
$1$ |
\( 3^{2} \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 3^{11} \cdot 5 \cdot 7^{2} \cdot 13^{19} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$324979200$ |
$4.216118$ |
$633814853024541310976/367993254509587395$ |
$1.14870$ |
$5.75065$ |
$[0, 0, 1, 996033948, 692703959197]$ |
\(y^2+y=x^3+996033948x+692703959197\) |
390.2.0.? |
$[ ]$ |
| 458640.do1 |
458640do1 |
458640.do |
458640do |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{12} \cdot 3^{11} \cdot 5 \cdot 7^{2} \cdot 13^{13} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$2.190240726$ |
$1$ |
|
$2$ |
$139276800$ |
$3.626793$ |
$633814853024541310976/367993254509587395$ |
$1.14870$ |
$5.11656$ |
$[0, 0, 0, 94299072, -20178904592]$ |
\(y^2=x^3+94299072x-20178904592\) |
390.2.0.? |
$[(34241, 6584409)]$ |
| 458640.lf1 |
458640lf1 |
458640.lf |
458640lf |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{12} \cdot 3^{11} \cdot 5 \cdot 7^{8} \cdot 13^{13} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$1$ |
$121$ |
$11$ |
$0$ |
$974937600$ |
$4.599747$ |
$633814853024541310976/367993254509587395$ |
$1.14870$ |
$6.01219$ |
$[0, 0, 0, 4620654528, 6921364275056]$ |
\(y^2=x^3+4620654528x+6921364275056\) |
390.2.0.? |
$[ ]$ |