Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
3990.l1 |
3990l4 |
3990.l |
3990l |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 19 \) |
\( 2^{3} \cdot 3^{7} \cdot 5^{4} \cdot 7^{8} \cdot 19 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.6.0.1 |
2B |
$2280$ |
$48$ |
$0$ |
$1.028559793$ |
$1$ |
|
$6$ |
$64512$ |
$2.146687$ |
$617611911727813844500009/1197723879765000$ |
$1.01554$ |
$6.60675$ |
$[1, 0, 1, -1774179, 909437302]$ |
\(y^2+xy+y=x^3-1774179x+909437302\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 40.12.0-4.c.1.5, 120.24.0.?, $\ldots$ |
$[(776, -51)]$ |
11970.bq1 |
11970cd3 |
11970.bq |
11970cd |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 19 \) |
\( 2^{3} \cdot 3^{13} \cdot 5^{4} \cdot 7^{8} \cdot 19 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$2280$ |
$48$ |
$0$ |
$7.709502981$ |
$1$ |
|
$0$ |
$516096$ |
$2.695992$ |
$617611911727813844500009/1197723879765000$ |
$1.01554$ |
$6.53576$ |
$[1, -1, 1, -15967607, -24554807161]$ |
\(y^2+xy+y=x^3-x^2-15967607x-24554807161\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 120.24.0.?, 456.24.0.?, 760.24.0.?, $\ldots$ |
$[(115741/5, 3098396/5)]$ |
19950.cn1 |
19950ce4 |
19950.cn |
19950ce |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 19 \) |
\( 2^{3} \cdot 3^{7} \cdot 5^{10} \cdot 7^{8} \cdot 19 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$2280$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1548288$ |
$2.951405$ |
$617611911727813844500009/1197723879765000$ |
$1.01554$ |
$6.50812$ |
$[1, 1, 1, -44354463, 113679662781]$ |
\(y^2+xy+y=x^3+x^2-44354463x+113679662781\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 60.12.0-4.c.1.1, 120.24.0.?, $\ldots$ |
$[ ]$ |
27930.u1 |
27930q4 |
27930.u |
27930q |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( 2^{3} \cdot 3^{7} \cdot 5^{4} \cdot 7^{14} \cdot 19 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$15960$ |
$48$ |
$0$ |
$20.11541425$ |
$1$ |
|
$0$ |
$3096576$ |
$3.119640$ |
$617611911727813844500009/1197723879765000$ |
$1.01554$ |
$6.49142$ |
$[1, 1, 0, -86934747, -312023929419]$ |
\(y^2+xy=x^3+x^2-86934747x-312023929419\) |
2.3.0.a.1, 4.6.0.c.1, 84.12.0.?, 120.12.0.?, 280.12.0.?, $\ldots$ |
$[(-6841400341/1127, 2956356143096/1127)]$ |
31920.k1 |
31920z4 |
31920.k |
31920z |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 19 \) |
\( 2^{15} \cdot 3^{7} \cdot 5^{4} \cdot 7^{8} \cdot 19 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2280$ |
$48$ |
$0$ |
$7.377832472$ |
$1$ |
|
$1$ |
$1548288$ |
$2.839832$ |
$617611911727813844500009/1197723879765000$ |
$1.01554$ |
$6.08408$ |
$[0, -1, 0, -28386856, -58203987344]$ |
\(y^2=x^3-x^2-28386856x-58203987344\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 40.12.0-4.c.1.5, 120.24.0.?, $\ldots$ |
$[(98961/4, 3382225/4)]$ |
59850.cb1 |
59850cl4 |
59850.cb |
59850cl |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 19 \) |
\( 2^{3} \cdot 3^{13} \cdot 5^{10} \cdot 7^{8} \cdot 19 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2280$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$12386304$ |
$3.500710$ |
$617611911727813844500009/1197723879765000$ |
$1.01554$ |
$6.45737$ |
$[1, -1, 0, -399190167, -3069750085259]$ |
\(y^2+xy=x^3-x^2-399190167x-3069750085259\) |
2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 24.12.0-4.c.1.3, 120.24.0.?, $\ldots$ |
$[ ]$ |
75810.cc1 |
75810cc4 |
75810.cc |
75810cc |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 19^{2} \) |
\( 2^{3} \cdot 3^{7} \cdot 5^{4} \cdot 7^{8} \cdot 19^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.7 |
2B |
$2280$ |
$48$ |
$0$ |
$21.61882139$ |
$1$ |
|
$0$ |
$23224320$ |
$3.618904$ |
$617611911727813844500009/1197723879765000$ |
$1.01554$ |
$6.44775$ |
$[1, 1, 1, -640478446, -6239111413021]$ |
\(y^2+xy+y=x^3+x^2-640478446x-6239111413021\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 120.24.0.?, 228.12.0.?, $\ldots$ |
$[(-244066053249/4087, 719417667904705/4087)]$ |
83790.cw1 |
83790dx4 |
83790.cw |
83790dx |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( 2^{3} \cdot 3^{13} \cdot 5^{4} \cdot 7^{14} \cdot 19 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$15960$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$24772608$ |
$3.668949$ |
$617611911727813844500009/1197723879765000$ |
$1.01554$ |
$6.44379$ |
$[1, -1, 1, -782412728, 8423863681587]$ |
\(y^2+xy+y=x^3-x^2-782412728x+8423863681587\) |
2.3.0.a.1, 4.6.0.c.1, 28.12.0-4.c.1.1, 120.12.0.?, 456.12.0.?, $\ldots$ |
$[ ]$ |
95760.fl1 |
95760ff4 |
95760.fl |
95760ff |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 19 \) |
\( 2^{15} \cdot 3^{13} \cdot 5^{4} \cdot 7^{8} \cdot 19 \) |
$1$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$2280$ |
$48$ |
$0$ |
$2.041798444$ |
$1$ |
|
$9$ |
$12386304$ |
$3.389141$ |
$617611911727813844500009/1197723879765000$ |
$1.01554$ |
$6.07603$ |
$[0, 0, 0, -255481707, 1571763139994]$ |
\(y^2=x^3-255481707x+1571763139994\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 120.24.0.?, 456.24.0.?, 760.24.0.?, $\ldots$ |
$[(9413, 30800)]$ |
127680.bw1 |
127680x4 |
127680.bw |
127680x |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 19 \) |
\( 2^{21} \cdot 3^{7} \cdot 5^{4} \cdot 7^{8} \cdot 19 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2280$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$12386304$ |
$3.186405$ |
$617611911727813844500009/1197723879765000$ |
$1.01554$ |
$5.72044$ |
$[0, -1, 0, -113547425, 465745446177]$ |
\(y^2=x^3-x^2-113547425x+465745446177\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.1, 40.12.0-4.c.1.4, 76.12.0.?, $\ldots$ |
$[ ]$ |
127680.gm1 |
127680gq4 |
127680.gm |
127680gq |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 19 \) |
\( 2^{21} \cdot 3^{7} \cdot 5^{4} \cdot 7^{8} \cdot 19 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2280$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$12386304$ |
$3.186405$ |
$617611911727813844500009/1197723879765000$ |
$1.01554$ |
$5.72044$ |
$[0, 1, 0, -113547425, -465745446177]$ |
\(y^2=x^3+x^2-113547425x-465745446177\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.2, 40.12.0-4.c.1.4, 76.12.0.?, $\ldots$ |
$[ ]$ |
139650.jf1 |
139650cm4 |
139650.jf |
139650cm |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
\( 2^{3} \cdot 3^{7} \cdot 5^{10} \cdot 7^{14} \cdot 19 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$15960$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$74317824$ |
$3.924358$ |
$617611911727813844500009/1197723879765000$ |
$1.01554$ |
$6.42466$ |
$[1, 0, 0, -2173368688, -38998644440008]$ |
\(y^2+xy=x^3-2173368688x-38998644440008\) |
2.3.0.a.1, 4.6.0.c.1, 56.12.0-4.c.1.5, 120.12.0.?, 420.12.0.?, $\ldots$ |
$[ ]$ |
159600.dt1 |
159600bv4 |
159600.dt |
159600bv |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 19 \) |
\( 2^{15} \cdot 3^{7} \cdot 5^{10} \cdot 7^{8} \cdot 19 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$2280$ |
$48$ |
$0$ |
$4.848091982$ |
$1$ |
|
$5$ |
$37158912$ |
$3.644554$ |
$617611911727813844500009/1197723879765000$ |
$1.01554$ |
$6.07278$ |
$[0, 1, 0, -709671408, -7276917760812]$ |
\(y^2=x^3+x^2-709671408x-7276917760812\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 60.12.0-4.c.1.2, 120.24.0.?, $\ldots$ |
$[(-15396, 1206)]$ |
223440.fq1 |
223440f3 |
223440.fq |
223440f |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( 2^{15} \cdot 3^{7} \cdot 5^{4} \cdot 7^{14} \cdot 19 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$15960$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$74317824$ |
$3.812790$ |
$617611911727813844500009/1197723879765000$ |
$1.01554$ |
$6.07080$ |
$[0, 1, 0, -1390955960, 19966749570900]$ |
\(y^2=x^3+x^2-1390955960x+19966749570900\) |
2.3.0.a.1, 4.6.0.c.1, 84.12.0.?, 120.12.0.?, 280.12.0.?, $\ldots$ |
$[ ]$ |
227430.bn1 |
227430dy3 |
227430.bn |
227430dy |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 19^{2} \) |
\( 2^{3} \cdot 3^{13} \cdot 5^{4} \cdot 7^{8} \cdot 19^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2280$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$185794560$ |
$4.168213$ |
$617611911727813844500009/1197723879765000$ |
$1.01554$ |
$6.40787$ |
$[1, -1, 0, -5764306014, 168450243845548]$ |
\(y^2+xy=x^3-x^2-5764306014x+168450243845548\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.1, 40.12.0-4.c.1.6, 76.12.0.?, $\ldots$ |
$[ ]$ |
379050.fb1 |
379050fb4 |
379050.fb |
379050fb |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 19^{2} \) |
\( 2^{3} \cdot 3^{7} \cdot 5^{10} \cdot 7^{8} \cdot 19^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2280$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$557383680$ |
$4.423622$ |
$617611911727813844500009/1197723879765000$ |
$1.01554$ |
$6.39165$ |
$[1, 0, 1, -16011961151, -779856902705302]$ |
\(y^2+xy+y=x^3-16011961151x-779856902705302\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.4, 40.12.0-4.c.1.1, 120.24.0.?, $\ldots$ |
$[ ]$ |
383040.dd1 |
383040dd4 |
383040.dd |
383040dd |
$4$ |
$4$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 19 \) |
\( 2^{21} \cdot 3^{13} \cdot 5^{4} \cdot 7^{8} \cdot 19 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.7 |
2B |
$2280$ |
$48$ |
$0$ |
$1$ |
$9$ |
$3$ |
$1$ |
$99090432$ |
$3.735714$ |
$617611911727813844500009/1197723879765000$ |
$1.01554$ |
$5.74433$ |
$[0, 0, 0, -1021926828, -12574105119952]$ |
\(y^2=x^3-1021926828x-12574105119952\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 120.24.0.?, 228.12.0.?, $\ldots$ |
$[ ]$ |
383040.ee1 |
383040ee3 |
383040.ee |
383040ee |
$4$ |
$4$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 19 \) |
\( 2^{21} \cdot 3^{13} \cdot 5^{4} \cdot 7^{8} \cdot 19 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.8 |
2B |
$2280$ |
$48$ |
$0$ |
$2.697881259$ |
$1$ |
|
$5$ |
$99090432$ |
$3.735714$ |
$617611911727813844500009/1197723879765000$ |
$1.01554$ |
$5.74433$ |
$[0, 0, 0, -1021926828, 12574105119952]$ |
\(y^2=x^3-1021926828x+12574105119952\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 120.24.0.?, 228.12.0.?, $\ldots$ |
$[(18026, 100800)]$ |
418950.x1 |
418950x3 |
418950.x |
418950x |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
\( 2^{3} \cdot 3^{13} \cdot 5^{10} \cdot 7^{14} \cdot 19 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$15960$ |
$48$ |
$0$ |
$12.30181698$ |
$1$ |
|
$0$ |
$594542592$ |
$4.473663$ |
$617611911727813844500009/1197723879765000$ |
$1.01554$ |
$6.38862$ |
$[1, -1, 0, -19560318192, 1052963399880216]$ |
\(y^2+xy=x^3-x^2-19560318192x+1052963399880216\) |
2.3.0.a.1, 4.6.0.c.1, 120.12.0.?, 140.12.0.?, 168.12.0.?, $\ldots$ |
$[(7112479/6, 15099001313/6)]$ |
478800.gt1 |
478800gt3 |
478800.gt |
478800gt |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 19 \) |
\( 2^{15} \cdot 3^{13} \cdot 5^{10} \cdot 7^{8} \cdot 19 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2280$ |
$48$ |
$0$ |
$22.39664607$ |
$1$ |
|
$1$ |
$297271296$ |
$4.193855$ |
$617611911727813844500009/1197723879765000$ |
$1.01554$ |
$6.06667$ |
$[0, 0, 0, -6387042675, 196470392499250]$ |
\(y^2=x^3-6387042675x+196470392499250\) |
2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.2, 24.12.0-4.c.1.3, 120.24.0.?, $\ldots$ |
$[(1703248268191/5751, 386343104745517514/5751)]$ |
482790.hh1 |
482790hh4 |
482790.hh |
482790hh |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 19 \) |
\( 2^{3} \cdot 3^{7} \cdot 5^{4} \cdot 7^{8} \cdot 11^{6} \cdot 19 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$25080$ |
$48$ |
$0$ |
$1.248319092$ |
$1$ |
|
$6$ |
$82575360$ |
$3.345634$ |
$617611911727813844500009/1197723879765000$ |
$1.01554$ |
$5.28507$ |
$[1, 0, 0, -214675601, -1210675724895]$ |
\(y^2+xy=x^3-214675601x-1210675724895\) |
2.3.0.a.1, 4.6.0.c.1, 120.12.0.?, 132.12.0.?, 440.12.0.?, $\ldots$ |
$[(-8456, 5551)]$ |