Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
31850.w1 |
31850a1 |
31850.w |
31850a |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( 2 \cdot 5^{10} \cdot 7^{8} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.2 |
|
$8$ |
$2$ |
$0$ |
$2.047605068$ |
$1$ |
|
$2$ |
$211680$ |
$1.813446$ |
$590625/338$ |
$1.26302$ |
$4.33518$ |
$[1, -1, 0, -66992, 720166]$ |
\(y^2+xy=x^3-x^2-66992x+720166\) |
8.2.0.b.1 |
$[(-257, 1084)]$ |
31850.x1 |
31850s1 |
31850.x |
31850s |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( 2 \cdot 5^{10} \cdot 7^{2} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.2 |
|
$8$ |
$2$ |
$0$ |
$2.469352605$ |
$1$ |
|
$2$ |
$30240$ |
$0.840490$ |
$590625/338$ |
$1.26302$ |
$3.20916$ |
$[1, -1, 0, -1367, -1709]$ |
\(y^2+xy=x^3-x^2-1367x-1709\) |
8.2.0.b.1 |
$[(-15, 131)]$ |
31850.cc1 |
31850ch1 |
31850.cc |
31850ch |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( 2 \cdot 5^{4} \cdot 7^{2} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.2 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6048$ |
$0.035771$ |
$590625/338$ |
$1.26302$ |
$2.27785$ |
$[1, -1, 1, -55, -3]$ |
\(y^2+xy+y=x^3-x^2-55x-3\) |
8.2.0.b.1 |
$[ ]$ |
31850.cd1 |
31850cg1 |
31850.cd |
31850cg |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( 2 \cdot 5^{4} \cdot 7^{8} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.2 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$42336$ |
$1.008726$ |
$590625/338$ |
$1.26302$ |
$3.40386$ |
$[1, -1, 1, -2680, 6297]$ |
\(y^2+xy+y=x^3-x^2-2680x+6297\) |
8.2.0.b.1 |
$[ ]$ |
254800.cy1 |
254800cy1 |
254800.cy |
254800cy |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( 2^{13} \cdot 5^{4} \cdot 7^{2} \cdot 13^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.2 |
|
$8$ |
$2$ |
$0$ |
$1.595824312$ |
$1$ |
|
$12$ |
$145152$ |
$0.728918$ |
$590625/338$ |
$1.26302$ |
$2.56553$ |
$[0, 0, 0, -875, 1050]$ |
\(y^2=x^3-875x+1050\) |
8.2.0.b.1 |
$[(-19, 104), (29, 8)]$ |
254800.cz1 |
254800cz1 |
254800.cz |
254800cz |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( 2^{13} \cdot 5^{10} \cdot 7^{8} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.2 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5080320$ |
$2.506592$ |
$590625/338$ |
$1.26302$ |
$4.27919$ |
$[0, 0, 0, -1071875, -45018750]$ |
\(y^2=x^3-1071875x-45018750\) |
8.2.0.b.1 |
$[ ]$ |
254800.da1 |
254800da1 |
254800.da |
254800da |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( 2^{13} \cdot 5^{4} \cdot 7^{8} \cdot 13^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.2 |
|
$8$ |
$2$ |
$0$ |
$0.492852714$ |
$1$ |
|
$18$ |
$1016064$ |
$1.701874$ |
$590625/338$ |
$1.26302$ |
$3.50345$ |
$[0, 0, 0, -42875, -360150]$ |
\(y^2=x^3-42875x-360150\) |
8.2.0.b.1 |
$[(245, 1960), (-49, 1274)]$ |
254800.db1 |
254800db1 |
254800.db |
254800db |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( 2^{13} \cdot 5^{10} \cdot 7^{2} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.2 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$725760$ |
$1.533638$ |
$590625/338$ |
$1.26302$ |
$3.34127$ |
$[0, 0, 0, -21875, 131250]$ |
\(y^2=x^3-21875x+131250\) |
8.2.0.b.1 |
$[ ]$ |
286650.b1 |
286650b1 |
286650.b |
286650b |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( 2 \cdot 3^{6} \cdot 5^{4} \cdot 7^{2} \cdot 13^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.2 |
|
$8$ |
$2$ |
$0$ |
$0.741084683$ |
$1$ |
|
$10$ |
$193536$ |
$0.585077$ |
$590625/338$ |
$1.26302$ |
$2.40412$ |
$[1, -1, 0, -492, 566]$ |
\(y^2+xy=x^3-x^2-492x+566\) |
8.2.0.b.1 |
$[(-1, 33), (25, 46)]$ |
286650.i1 |
286650i1 |
286650.i |
286650i |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( 2 \cdot 3^{6} \cdot 5^{4} \cdot 7^{8} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.2 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1354752$ |
$1.558033$ |
$590625/338$ |
$1.26302$ |
$3.33325$ |
$[1, -1, 0, -24117, -145909]$ |
\(y^2+xy=x^3-x^2-24117x-145909\) |
8.2.0.b.1 |
$[ ]$ |
286650.iq1 |
286650iq1 |
286650.iq |
286650iq |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( 2 \cdot 3^{6} \cdot 5^{10} \cdot 7^{8} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.2 |
|
$8$ |
$2$ |
$0$ |
$5.010835728$ |
$1$ |
|
$0$ |
$6773760$ |
$2.362751$ |
$590625/338$ |
$1.26302$ |
$4.10172$ |
$[1, -1, 1, -602930, -18841553]$ |
\(y^2+xy+y=x^3-x^2-602930x-18841553\) |
8.2.0.b.1 |
$[(20287/2, 2834743/2)]$ |
286650.iy1 |
286650iy1 |
286650.iy |
286650iy |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( 2 \cdot 3^{6} \cdot 5^{10} \cdot 7^{2} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.2 |
|
$8$ |
$2$ |
$0$ |
$5.067933416$ |
$1$ |
|
$0$ |
$967680$ |
$1.389797$ |
$590625/338$ |
$1.26302$ |
$3.17259$ |
$[1, -1, 1, -12305, 58447]$ |
\(y^2+xy+y=x^3-x^2-12305x+58447\) |
8.2.0.b.1 |
$[(-53/2, 3793/2)]$ |
414050.bh1 |
414050bh1 |
414050.bh |
414050bh |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( 2 \cdot 5^{4} \cdot 7^{2} \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.2 |
|
$8$ |
$2$ |
$0$ |
$1.205240424$ |
$1$ |
|
$4$ |
$1016064$ |
$1.318245$ |
$590625/338$ |
$1.26302$ |
$3.01600$ |
$[1, -1, 0, -9242, -33734]$ |
\(y^2+xy=x^3-x^2-9242x-33734\) |
8.2.0.b.1 |
$[(-81, 463)]$ |
414050.bi1 |
414050bi1 |
414050.bi |
414050bi |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( 2 \cdot 5^{4} \cdot 7^{8} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.2 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7112448$ |
$2.291203$ |
$590625/338$ |
$1.26302$ |
$3.91872$ |
$[1, -1, 0, -452867, 12476491]$ |
\(y^2+xy=x^3-x^2-452867x+12476491\) |
8.2.0.b.1 |
$[ ]$ |
414050.fl1 |
414050fl1 |
414050.fl |
414050fl |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( 2 \cdot 5^{10} \cdot 7^{8} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.2 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$35562240$ |
$3.095921$ |
$590625/338$ |
$1.26302$ |
$4.66534$ |
$[1, -1, 1, -11321680, 1548239697]$ |
\(y^2+xy+y=x^3-x^2-11321680x+1548239697\) |
8.2.0.b.1 |
$[ ]$ |
414050.fm1 |
414050fm1 |
414050.fm |
414050fm |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( 2 \cdot 5^{10} \cdot 7^{2} \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.2 |
|
$8$ |
$2$ |
$0$ |
$18.99379242$ |
$1$ |
|
$0$ |
$5080320$ |
$2.122963$ |
$590625/338$ |
$1.26302$ |
$3.76263$ |
$[1, -1, 1, -231055, -4447803]$ |
\(y^2+xy+y=x^3-x^2-231055x-4447803\) |
8.2.0.b.1 |
$[(-326750895/2144, 33930932671479/2144)]$ |