Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
7426.e2 |
7426a1 |
7426.e |
7426a |
$2$ |
$2$ |
\( 2 \cdot 47 \cdot 79 \) |
\( 2^{6} \cdot 47 \cdot 79 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.6.0.1 |
2B |
$29704$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$3456$ |
$-0.113814$ |
$56667352321/237632$ |
$0.80807$ |
$2.77810$ |
$[1, 1, 1, -80, 241]$ |
\(y^2+xy+y=x^3+x^2-80x+241\) |
2.3.0.a.1, 8.6.0.c.1, 7426.6.0.?, 29704.12.0.? |
$[ ]$ |
59408.a2 |
59408e1 |
59408.a |
59408e |
$2$ |
$2$ |
\( 2^{4} \cdot 47 \cdot 79 \) |
\( 2^{18} \cdot 47 \cdot 79 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.1 |
2B |
$29704$ |
$12$ |
$0$ |
$4.134985063$ |
$1$ |
|
$15$ |
$82944$ |
$0.579333$ |
$56667352321/237632$ |
$0.80807$ |
$3.00925$ |
$[0, 1, 0, -1280, -17996]$ |
\(y^2=x^3+x^2-1280x-17996\) |
2.3.0.a.1, 8.6.0.c.1, 7426.6.0.?, 29704.12.0.? |
$[(-20, 2), (-21, 8)]$ |
66834.l2 |
66834i1 |
66834.l |
66834i |
$2$ |
$2$ |
\( 2 \cdot 3^{2} \cdot 47 \cdot 79 \) |
\( 2^{6} \cdot 3^{6} \cdot 47 \cdot 79 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.1 |
2B |
$29704$ |
$12$ |
$0$ |
$7.552114256$ |
$1$ |
|
$1$ |
$82944$ |
$0.435493$ |
$56667352321/237632$ |
$0.80807$ |
$2.82198$ |
$[1, -1, 0, -720, -7232]$ |
\(y^2+xy=x^3-x^2-720x-7232\) |
2.3.0.a.1, 8.6.0.c.1, 7426.6.0.?, 29704.12.0.? |
$[(15416/7, 1850624/7)]$ |
185650.a2 |
185650g1 |
185650.a |
185650g |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 47 \cdot 79 \) |
\( 2^{6} \cdot 5^{6} \cdot 47 \cdot 79 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.1 |
2B |
$29704$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$276480$ |
$0.690906$ |
$56667352321/237632$ |
$0.80807$ |
$2.83697$ |
$[1, 0, 1, -2001, 34148]$ |
\(y^2+xy+y=x^3-2001x+34148\) |
2.3.0.a.1, 8.6.0.c.1, 7426.6.0.?, 29704.12.0.? |
$[ ]$ |
237632.c2 |
237632c1 |
237632.c |
237632c |
$2$ |
$2$ |
\( 2^{6} \cdot 47 \cdot 79 \) |
\( 2^{24} \cdot 47 \cdot 79 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.1 |
2B |
$29704$ |
$12$ |
$0$ |
$6.799501752$ |
$1$ |
|
$1$ |
$663552$ |
$0.925907$ |
$56667352321/237632$ |
$0.80807$ |
$3.00821$ |
$[0, 1, 0, -5121, 138847]$ |
\(y^2=x^3+x^2-5121x+138847\) |
2.3.0.a.1, 8.6.0.c.1, 7426.6.0.?, 29704.12.0.? |
$[(2557/7, 43980/7)]$ |
237632.l2 |
237632l1 |
237632.l |
237632l |
$2$ |
$2$ |
\( 2^{6} \cdot 47 \cdot 79 \) |
\( 2^{24} \cdot 47 \cdot 79 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.1 |
2B |
$29704$ |
$12$ |
$0$ |
$1$ |
$16$ |
$2$ |
$1$ |
$663552$ |
$0.925907$ |
$56667352321/237632$ |
$0.80807$ |
$3.00821$ |
$[0, -1, 0, -5121, -138847]$ |
\(y^2=x^3-x^2-5121x-138847\) |
2.3.0.a.1, 8.6.0.c.1, 7426.6.0.?, 29704.12.0.? |
$[ ]$ |
349022.j2 |
349022j1 |
349022.j |
349022j |
$2$ |
$2$ |
\( 2 \cdot 47^{2} \cdot 79 \) |
\( 2^{6} \cdot 47^{7} \cdot 79 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.1 |
2B |
$29704$ |
$12$ |
$0$ |
$42.81496577$ |
$1$ |
|
$1$ |
$7630848$ |
$1.811260$ |
$56667352321/237632$ |
$0.80807$ |
$3.75004$ |
$[1, 1, 1, -176766, -28575109]$ |
\(y^2+xy+y=x^3+x^2-176766x-28575109\) |
2.3.0.a.1, 8.6.0.c.1, 7426.6.0.?, 29704.12.0.? |
$[(10582276567766507745/46752881, 34047207192667683967371035567/46752881)]$ |
363874.o2 |
363874o1 |
363874.o |
363874o |
$2$ |
$2$ |
\( 2 \cdot 7^{2} \cdot 47 \cdot 79 \) |
\( 2^{6} \cdot 7^{6} \cdot 47 \cdot 79 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.1 |
2B |
$29704$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$995328$ |
$0.859141$ |
$56667352321/237632$ |
$0.80807$ |
$2.84554$ |
$[1, 0, 0, -3921, -94487]$ |
\(y^2+xy=x^3-3921x-94487\) |
2.3.0.a.1, 8.6.0.c.1, 7426.6.0.?, 29704.12.0.? |
$[ ]$ |