| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 15015.s2 |
15015b4 |
15015.s |
15015b |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) |
\( 3^{5} \cdot 5 \cdot 7^{8} \cdot 11 \cdot 13^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.6.0.1 |
2B |
$17160$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$133120$ |
$1.711023$ |
$56059153781993690329/2200526953389765$ |
$0.94403$ |
$4.72849$ |
$[1, 1, 0, -79733, 8333532]$ |
\(y^2+xy=x^3+x^2-79733x+8333532\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 104.12.0.?, 220.12.0.?, $\ldots$ |
$[ ]$ |
| 45045.m2 |
45045bh3 |
45045.m |
45045bh |
$4$ |
$4$ |
\( 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) |
\( 3^{11} \cdot 5 \cdot 7^{8} \cdot 11 \cdot 13^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$17160$ |
$48$ |
$0$ |
$6.656527816$ |
$1$ |
|
$0$ |
$1064960$ |
$2.260330$ |
$56059153781993690329/2200526953389765$ |
$0.94403$ |
$4.85885$ |
$[1, -1, 1, -717602, -225722964]$ |
\(y^2+xy+y=x^3-x^2-717602x-225722964\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 312.24.0.?, 330.6.0.?, 660.24.0.?, $\ldots$ |
$[(36171/2, 6811477/2)]$ |
| 75075.t2 |
75075bn3 |
75075.t |
75075bn |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \) |
\( 3^{5} \cdot 5^{7} \cdot 7^{8} \cdot 11 \cdot 13^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$17160$ |
$48$ |
$0$ |
$0.306248969$ |
$1$ |
|
$10$ |
$3194880$ |
$2.515743$ |
$56059153781993690329/2200526953389765$ |
$0.94403$ |
$4.91078$ |
$[1, 0, 0, -1993338, 1045678167]$ |
\(y^2+xy=x^3-1993338x+1045678167\) |
2.3.0.a.1, 4.6.0.c.1, 44.12.0-4.c.1.1, 60.12.0-4.c.1.1, 312.12.0.?, $\ldots$ |
$[(507, 12609)]$ |
| 105105.cc2 |
105105ch3 |
105105.cc |
105105ch |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( 3^{5} \cdot 5 \cdot 7^{14} \cdot 11 \cdot 13^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$120120$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$6389760$ |
$2.683979$ |
$56059153781993690329/2200526953389765$ |
$0.94403$ |
$4.94247$ |
$[1, 0, 1, -3906943, -2870122279]$ |
\(y^2+xy+y=x^3-3906943x-2870122279\) |
2.3.0.a.1, 4.6.0.c.1, 84.12.0.?, 312.12.0.?, 330.6.0.?, $\ldots$ |
$[ ]$ |
| 165165.l2 |
165165x4 |
165165.l |
165165x |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) |
\( 3^{5} \cdot 5 \cdot 7^{8} \cdot 11^{7} \cdot 13^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$17160$ |
$48$ |
$0$ |
$4.890022822$ |
$1$ |
|
$0$ |
$15974400$ |
$2.909969$ |
$56059153781993690329/2200526953389765$ |
$0.94403$ |
$4.98226$ |
$[1, 1, 1, -9647756, -11140169776]$ |
\(y^2+xy+y=x^3+x^2-9647756x-11140169776\) |
2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 132.12.0.?, 312.12.0.?, $\ldots$ |
$[(24887/2, 3270947/2)]$ |
| 195195.g2 |
195195m3 |
195195.g |
195195m |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13^{2} \) |
\( 3^{5} \cdot 5 \cdot 7^{8} \cdot 11 \cdot 13^{10} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$17160$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$22364160$ |
$2.993496$ |
$56059153781993690329/2200526953389765$ |
$0.94403$ |
$4.99621$ |
$[1, 1, 1, -13474965, 18376144470]$ |
\(y^2+xy+y=x^3+x^2-13474965x+18376144470\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 156.12.0.?, 312.24.0.?, $\ldots$ |
$[ ]$ |
| 225225.do2 |
225225cx4 |
225225.do |
225225cx |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \) |
\( 3^{11} \cdot 5^{7} \cdot 7^{8} \cdot 11 \cdot 13^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$17160$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$25559040$ |
$3.065048$ |
$56059153781993690329/2200526953389765$ |
$0.94403$ |
$5.00787$ |
$[1, -1, 0, -17940042, -28233310509]$ |
\(y^2+xy=x^3-x^2-17940042x-28233310509\) |
2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 132.12.0.?, 312.12.0.?, $\ldots$ |
$[ ]$ |
| 240240.fn2 |
240240fn4 |
240240.fn |
240240fn |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) |
\( 2^{12} \cdot 3^{5} \cdot 5 \cdot 7^{8} \cdot 11 \cdot 13^{4} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$17160$ |
$48$ |
$0$ |
$0.732958836$ |
$1$ |
|
$27$ |
$8519680$ |
$2.404171$ |
$56059153781993690329/2200526953389765$ |
$0.94403$ |
$4.34167$ |
$[0, 1, 0, -1275736, -535897516]$ |
\(y^2=x^3+x^2-1275736x-535897516\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 104.12.0.?, 220.12.0.?, $\ldots$ |
$[(-658, 4368), (1526, 32760)]$ |
| 315315.x2 |
315315x3 |
315315.x |
315315x |
$4$ |
$4$ |
\( 3^{2} \cdot 5 \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( 3^{11} \cdot 5 \cdot 7^{14} \cdot 11 \cdot 13^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$120120$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$51118080$ |
$3.233284$ |
$56059153781993690329/2200526953389765$ |
$0.94403$ |
$5.03423$ |
$[1, -1, 1, -35162483, 77493301526]$ |
\(y^2+xy+y=x^3-x^2-35162483x+77493301526\) |
2.3.0.a.1, 4.6.0.c.1, 28.12.0-4.c.1.1, 312.12.0.?, 330.6.0.?, $\ldots$ |
$[ ]$ |
| 495495.do2 |
495495do3 |
495495.do |
495495do |
$4$ |
$4$ |
\( 3^{2} \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) |
\( 3^{11} \cdot 5 \cdot 7^{8} \cdot 11^{7} \cdot 13^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$17160$ |
$48$ |
$0$ |
$2.247266442$ |
$1$ |
|
$4$ |
$127795200$ |
$3.459278$ |
$56059153781993690329/2200526953389765$ |
$0.94403$ |
$5.06752$ |
$[1, -1, 0, -86829804, 300697754143]$ |
\(y^2+xy=x^3-x^2-86829804x+300697754143\) |
2.3.0.a.1, 4.6.0.c.1, 44.12.0-4.c.1.1, 60.12.0-4.c.1.1, 312.12.0.?, $\ldots$ |
$[(1994, 367085)]$ |