Learn more

Refine search


Results (16 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
36960.u4 36960.u \( 2^{5} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 2960, 573112]$ \(y^2=x^3-x^2+2960x+573112\) 2.3.0.a.1, 4.12.0-4.c.1.2, 56.24.0-56.v.1.1, 120.24.0.?, 840.48.0.? $[ ]$
36960.bl4 36960.bl \( 2^{5} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \) $1$ $\Z/4\Z$ $2.093751470$ $[0, 1, 0, 2960, -573112]$ \(y^2=x^3+x^2+2960x-573112\) 2.3.0.a.1, 4.12.0-4.c.1.1, 56.24.0-56.v.1.4, 120.24.0.?, 840.48.0.? $[(86, 570)]$
73920.k4 73920.k \( 2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \) $2$ $\Z/2\Z$ $5.482035529$ $[0, -1, 0, 11839, -4596735]$ \(y^2=x^3-x^2+11839x-4596735\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 28.12.0-4.c.1.2, 56.24.0-56.v.1.3, $\ldots$ $[(193, 2200), (721, 19448)]$
73920.gd4 73920.gd \( 2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $1.011388141$ $[0, 1, 0, 11839, 4596735]$ \(y^2=x^3+x^2+11839x+4596735\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 28.12.0-4.c.1.1, 56.24.0-56.v.1.2, $\ldots$ $[(82, 2475)]$
110880.f4 110880.f \( 2^{5} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 26637, 15500662]$ \(y^2=x^3+26637x+15500662\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 40.12.0-4.c.1.5, 56.12.0.v.1, $\ldots$ $[ ]$
110880.bs4 110880.bs \( 2^{5} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 26637, -15500662]$ \(y^2=x^3+26637x-15500662\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 40.12.0-4.c.1.5, 56.12.0.v.1, $\ldots$ $[ ]$
184800.dd4 184800.dd \( 2^{5} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $6.718199418$ $[0, -1, 0, 73992, -71786988]$ \(y^2=x^3-x^2+73992x-71786988\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.2, 24.12.0-4.c.1.3, 56.12.0.v.1, $\ldots$ $[(1477/2, 19173/2)]$
184800.ed4 184800.ed \( 2^{5} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 73992, 71786988]$ \(y^2=x^3+x^2+73992x+71786988\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 24.12.0-4.c.1.3, 56.12.0.v.1, $\ldots$ $[ ]$
221760.ju4 221760.ju \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $3.170380076$ $[0, 0, 0, 106548, 124005296]$ \(y^2=x^3+106548x+124005296\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.2, 40.12.0-4.c.1.4, 56.12.0.v.1, $\ldots$ $[(-28, 11000)]$
221760.lz4 221760.lz \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $2.642722198$ $[0, 0, 0, 106548, -124005296]$ \(y^2=x^3+106548x-124005296\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.1, 40.12.0-4.c.1.4, 56.12.0.v.1, $\ldots$ $[(1898, 83160)]$
258720.bj4 258720.bj \( 2^{5} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 145024, 196867476]$ \(y^2=x^3-x^2+145024x+196867476\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 28.12.0-4.c.1.2, 56.24.0-56.v.1.3, $\ldots$ $[ ]$
258720.dp4 258720.dp \( 2^{5} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 145024, -196867476]$ \(y^2=x^3+x^2+145024x-196867476\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 28.12.0-4.c.1.1, 56.24.0-56.v.1.2, $\ldots$ $[ ]$
369600.ef4 369600.ef \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $2.692514092$ $[0, -1, 0, 295967, 573999937]$ \(y^2=x^3-x^2+295967x+573999937\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.6, 40.12.0-4.c.1.1, 56.12.0.v.1, $\ldots$ $[(16, 24057)]$
369600.sc4 369600.sc \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 295967, -573999937]$ \(y^2=x^3+x^2+295967x-573999937\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.6, 40.12.0-4.c.1.2, 56.12.0.v.1, $\ldots$ $[ ]$
406560.cd4 406560.cd \( 2^{5} \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $24.95045906$ $[0, -1, 0, 358120, -764244600]$ \(y^2=x^3-x^2+358120x-764244600\) 2.3.0.a.1, 4.6.0.c.1, 44.12.0-4.c.1.1, 56.12.0.v.1, 120.12.0.?, $\ldots$ $[(1355252144021/27871, 1556411640924509010/27871)]$
406560.fr4 406560.fr \( 2^{5} \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) $1$ $\Z/2\Z$ $2.245341978$ $[0, 1, 0, 358120, 764244600]$ \(y^2=x^3+x^2+358120x+764244600\) 2.3.0.a.1, 4.6.0.c.1, 44.12.0-4.c.1.2, 56.12.0.v.1, 120.12.0.?, $\ldots$ $[(430, 31590)]$
  displayed columns for results