Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
3160.b1 |
3160a2 |
3160.b |
3160a |
$2$ |
$2$ |
\( 2^{3} \cdot 5 \cdot 79 \) |
\( 2^{10} \cdot 5 \cdot 79^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$640$ |
$0.130304$ |
$55990084/31205$ |
$0.82963$ |
$3.07411$ |
$[0, 1, 0, -80, -80]$ |
\(y^2=x^3+x^2-80x-80\) |
2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? |
$[ ]$ |
6320.h1 |
6320d2 |
6320.h |
6320d |
$2$ |
$2$ |
\( 2^{4} \cdot 5 \cdot 79 \) |
\( 2^{10} \cdot 5 \cdot 79^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$1.521195739$ |
$1$ |
|
$3$ |
$1280$ |
$0.130304$ |
$55990084/31205$ |
$0.82963$ |
$2.83063$ |
$[0, -1, 0, -80, 80]$ |
\(y^2=x^3-x^2-80x+80\) |
2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? |
$[(-8, 12)]$ |
15800.d1 |
15800c2 |
15800.d |
15800c |
$2$ |
$2$ |
\( 2^{3} \cdot 5^{2} \cdot 79 \) |
\( 2^{10} \cdot 5^{7} \cdot 79^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$15360$ |
$0.935023$ |
$55990084/31205$ |
$0.82963$ |
$3.56119$ |
$[0, -1, 0, -2008, -5988]$ |
\(y^2=x^3-x^2-2008x-5988\) |
2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? |
$[ ]$ |
25280.b1 |
25280w2 |
25280.b |
25280w |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( 2^{16} \cdot 5 \cdot 79^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$2.483162001$ |
$1$ |
|
$3$ |
$10240$ |
$0.476878$ |
$55990084/31205$ |
$0.82963$ |
$2.85379$ |
$[0, 1, 0, -321, 319]$ |
\(y^2=x^3+x^2-321x+319\) |
2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? |
$[(17, 8)]$ |
25280.y1 |
25280d2 |
25280.y |
25280d |
$2$ |
$2$ |
\( 2^{6} \cdot 5 \cdot 79 \) |
\( 2^{16} \cdot 5 \cdot 79^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$5.914266402$ |
$1$ |
|
$1$ |
$10240$ |
$0.476878$ |
$55990084/31205$ |
$0.82963$ |
$2.85379$ |
$[0, -1, 0, -321, -319]$ |
\(y^2=x^3-x^2-321x-319\) |
2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? |
$[(667/3, 16588/3)]$ |
28440.k1 |
28440k2 |
28440.k |
28440k |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \cdot 79 \) |
\( 2^{10} \cdot 3^{6} \cdot 5 \cdot 79^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$2.570581371$ |
$1$ |
|
$3$ |
$15360$ |
$0.679610$ |
$55990084/31205$ |
$0.82963$ |
$3.05823$ |
$[0, 0, 0, -723, 1438]$ |
\(y^2=x^3-723x+1438\) |
2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? |
$[(27, 40)]$ |
31600.e1 |
31600e2 |
31600.e |
31600e |
$2$ |
$2$ |
\( 2^{4} \cdot 5^{2} \cdot 79 \) |
\( 2^{10} \cdot 5^{7} \cdot 79^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$0.974673441$ |
$1$ |
|
$17$ |
$30720$ |
$0.935023$ |
$55990084/31205$ |
$0.82963$ |
$3.32295$ |
$[0, 1, 0, -2008, 5988]$ |
\(y^2=x^3+x^2-2008x+5988\) |
2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? |
$[(-2, 100), (82, 632)]$ |
56880.f1 |
56880n2 |
56880.f |
56880n |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 79 \) |
\( 2^{10} \cdot 3^{6} \cdot 5 \cdot 79^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$1.271519648$ |
$1$ |
|
$5$ |
$30720$ |
$0.679610$ |
$55990084/31205$ |
$0.82963$ |
$2.86462$ |
$[0, 0, 0, -723, -1438]$ |
\(y^2=x^3-723x-1438\) |
2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? |
$[(-11, 72)]$ |
126400.f1 |
126400n2 |
126400.f |
126400n |
$2$ |
$2$ |
\( 2^{6} \cdot 5^{2} \cdot 79 \) |
\( 2^{16} \cdot 5^{7} \cdot 79^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$2.594837872$ |
$1$ |
|
$5$ |
$245760$ |
$1.281597$ |
$55990084/31205$ |
$0.82963$ |
$3.28484$ |
$[0, 1, 0, -8033, -55937]$ |
\(y^2=x^3+x^2-8033x-55937\) |
2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? |
$[(-86, 79)]$ |
126400.co1 |
126400cf2 |
126400.co |
126400cf |
$2$ |
$2$ |
\( 2^{6} \cdot 5^{2} \cdot 79 \) |
\( 2^{16} \cdot 5^{7} \cdot 79^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$10.90546206$ |
$1$ |
|
$1$ |
$245760$ |
$1.281597$ |
$55990084/31205$ |
$0.82963$ |
$3.28484$ |
$[0, -1, 0, -8033, 55937]$ |
\(y^2=x^3-x^2-8033x+55937\) |
2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? |
$[(412183/63, 143846200/63)]$ |
142200.j1 |
142200bh2 |
142200.j |
142200bh |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 79 \) |
\( 2^{10} \cdot 3^{6} \cdot 5^{7} \cdot 79^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$368640$ |
$1.484329$ |
$55990084/31205$ |
$0.82963$ |
$3.45727$ |
$[0, 0, 0, -18075, 179750]$ |
\(y^2=x^3-18075x+179750\) |
2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? |
$[ ]$ |
154840.s1 |
154840u2 |
154840.s |
154840u |
$2$ |
$2$ |
\( 2^{3} \cdot 5 \cdot 7^{2} \cdot 79 \) |
\( 2^{10} \cdot 5 \cdot 7^{6} \cdot 79^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$230400$ |
$1.103260$ |
$55990084/31205$ |
$0.82963$ |
$3.04997$ |
$[0, -1, 0, -3936, 19580]$ |
\(y^2=x^3-x^2-3936x+19580\) |
2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? |
$[ ]$ |
227520.dh1 |
227520g2 |
227520.dh |
227520g |
$2$ |
$2$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 79 \) |
\( 2^{16} \cdot 3^{6} \cdot 5 \cdot 79^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$3.742991009$ |
$1$ |
|
$3$ |
$245760$ |
$1.026184$ |
$55990084/31205$ |
$0.82963$ |
$2.87983$ |
$[0, 0, 0, -2892, -11504]$ |
\(y^2=x^3-2892x-11504\) |
2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? |
$[(60, 176)]$ |
227520.ex1 |
227520dm2 |
227520.ex |
227520dm |
$2$ |
$2$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 79 \) |
\( 2^{16} \cdot 3^{6} \cdot 5 \cdot 79^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$6.730390150$ |
$1$ |
|
$1$ |
$245760$ |
$1.026184$ |
$55990084/31205$ |
$0.82963$ |
$2.87983$ |
$[0, 0, 0, -2892, 11504]$ |
\(y^2=x^3-2892x+11504\) |
2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? |
$[(1480/3, 53884/3)]$ |
249640.g1 |
249640g2 |
249640.g |
249640g |
$2$ |
$2$ |
\( 2^{3} \cdot 5 \cdot 79^{2} \) |
\( 2^{10} \cdot 5 \cdot 79^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$32.17658956$ |
$1$ |
|
$1$ |
$3993600$ |
$2.315029$ |
$55990084/31205$ |
$0.82963$ |
$4.10281$ |
$[0, -1, 0, -501360, 26426012]$ |
\(y^2=x^3-x^2-501360x+26426012\) |
2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? |
$[(-2702414690379271/2913040, 306452899306440333335667/2913040)]$ |
284400.ff1 |
284400ff2 |
284400.ff |
284400ff |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 79 \) |
\( 2^{10} \cdot 3^{6} \cdot 5^{7} \cdot 79^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$2.781806655$ |
$1$ |
|
$5$ |
$737280$ |
$1.484329$ |
$55990084/31205$ |
$0.82963$ |
$3.26644$ |
$[0, 0, 0, -18075, -179750]$ |
\(y^2=x^3-18075x-179750\) |
2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? |
$[(-19, 396)]$ |
309680.e1 |
309680e2 |
309680.e |
309680e |
$2$ |
$2$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 79 \) |
\( 2^{10} \cdot 5 \cdot 7^{6} \cdot 79^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$1.409670906$ |
$1$ |
|
$7$ |
$460800$ |
$1.103260$ |
$55990084/31205$ |
$0.82963$ |
$2.88276$ |
$[0, 1, 0, -3936, -19580]$ |
\(y^2=x^3+x^2-3936x-19580\) |
2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? |
$[(74, 316)]$ |
382360.d1 |
382360d2 |
382360.d |
382360d |
$2$ |
$2$ |
\( 2^{3} \cdot 5 \cdot 11^{2} \cdot 79 \) |
\( 2^{10} \cdot 5 \cdot 11^{6} \cdot 79^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$1.673457989$ |
$1$ |
|
$5$ |
$819200$ |
$1.329252$ |
$55990084/31205$ |
$0.82963$ |
$3.04646$ |
$[0, 1, 0, -9720, 67648]$ |
\(y^2=x^3+x^2-9720x+67648\) |
2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? |
$[(128, 968)]$ |
499280.g1 |
499280g2 |
499280.g |
499280g |
$2$ |
$2$ |
\( 2^{4} \cdot 5 \cdot 79^{2} \) |
\( 2^{10} \cdot 5 \cdot 79^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$6.680946003$ |
$1$ |
|
$1$ |
$7987200$ |
$2.315029$ |
$55990084/31205$ |
$0.82963$ |
$3.88607$ |
$[0, 1, 0, -501360, -26426012]$ |
\(y^2=x^3+x^2-501360x-26426012\) |
2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? |
$[(123842/13, 1023524/13)]$ |