| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 33165.d1 |
33165b2 |
33165.d |
33165b |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 11 \cdot 67 \) |
\( 3^{9} \cdot 5^{4} \cdot 11 \cdot 67^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8844$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$276480$ |
$1.873161$ |
$5452398641302220763/30861875$ |
$0.94624$ |
$5.09452$ |
$[1, -1, 1, -990038, 379410292]$ |
\(y^2+xy+y=x^3-x^2-990038x+379410292\) |
2.3.0.a.1, 66.6.0.a.1, 804.6.0.?, 2948.6.0.?, 8844.12.0.? |
$[ ]$ |
| 33165.p1 |
33165j2 |
33165.p |
33165j |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 11 \cdot 67 \) |
\( 3^{3} \cdot 5^{4} \cdot 11 \cdot 67^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8844$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$92160$ |
$1.323856$ |
$5452398641302220763/30861875$ |
$0.94624$ |
$4.46126$ |
$[1, -1, 0, -110004, -14015565]$ |
\(y^2+xy=x^3-x^2-110004x-14015565\) |
2.3.0.a.1, 66.6.0.a.1, 804.6.0.?, 2948.6.0.?, 8844.12.0.? |
$[ ]$ |
| 165825.i1 |
165825m2 |
165825.i |
165825m |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3^{3} \cdot 5^{10} \cdot 11 \cdot 67^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8844$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$2211840$ |
$2.128574$ |
$5452398641302220763/30861875$ |
$0.94624$ |
$4.66732$ |
$[1, -1, 1, -2750105, -1754695728]$ |
\(y^2+xy+y=x^3-x^2-2750105x-1754695728\) |
2.3.0.a.1, 66.6.0.a.1, 804.6.0.?, 2948.6.0.?, 8844.12.0.? |
$[ ]$ |
| 165825.bc1 |
165825bj2 |
165825.bc |
165825bj |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3^{9} \cdot 5^{10} \cdot 11 \cdot 67^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8844$ |
$12$ |
$0$ |
$11.58643427$ |
$1$ |
|
$0$ |
$6635520$ |
$2.677879$ |
$5452398641302220763/30861875$ |
$0.94624$ |
$5.21577$ |
$[1, -1, 0, -24750942, 47401535591]$ |
\(y^2+xy=x^3-x^2-24750942x+47401535591\) |
2.3.0.a.1, 66.6.0.a.1, 804.6.0.?, 2948.6.0.?, 8844.12.0.? |
$[(544391/2, 400857059/2)]$ |
| 364815.k1 |
364815k2 |
364815.k |
364815k |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( 3^{3} \cdot 5^{4} \cdot 11^{7} \cdot 67^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8844$ |
$12$ |
$0$ |
$1.733024438$ |
$1$ |
|
$12$ |
$11059200$ |
$2.522804$ |
$5452398641302220763/30861875$ |
$0.94624$ |
$4.74936$ |
$[1, -1, 1, -13310507, 18694648514]$ |
\(y^2+xy+y=x^3-x^2-13310507x+18694648514\) |
2.3.0.a.1, 66.6.0.a.1, 804.6.0.?, 2948.6.0.?, 8844.12.0.? |
$[(1972, 9601), (2157, 2941)]$ |
| 364815.x1 |
364815x2 |
364815.x |
364815x |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 11^{2} \cdot 67 \) |
\( 3^{9} \cdot 5^{4} \cdot 11^{7} \cdot 67^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8844$ |
$12$ |
$0$ |
$39.87956128$ |
$1$ |
|
$0$ |
$33177600$ |
$3.072109$ |
$5452398641302220763/30861875$ |
$0.94624$ |
$5.26405$ |
$[1, -1, 0, -119794560, -504635715325]$ |
\(y^2+xy=x^3-x^2-119794560x-504635715325\) |
2.3.0.a.1, 66.6.0.a.1, 804.6.0.?, 2948.6.0.?, 8844.12.0.? |
$[(8632736772050764519/6198242, 25306824379139681785175994647/6198242)]$ |