| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 43680.y4 |
43680bq2 |
43680.y |
43680bq |
$4$ |
$4$ |
\( 2^{5} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \) |
\( - 2^{9} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot 13^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$2184$ |
$48$ |
$0$ |
$2.158654183$ |
$1$ |
|
$3$ |
$49152$ |
$0.859664$ |
$542939080312/404852175$ |
$0.89741$ |
$3.11275$ |
$[0, -1, 0, 1360, 9912]$ |
\(y^2=x^3-x^2+1360x+9912\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 56.24.0-56.v.1.1, 312.24.0.?, 2184.48.0.? |
$[(29, 270)]$ |
| 43680.cd4 |
43680ce2 |
43680.cd |
43680ce |
$4$ |
$4$ |
\( 2^{5} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \) |
\( - 2^{9} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot 13^{4} \) |
$1$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$2184$ |
$48$ |
$0$ |
$3.466534950$ |
$1$ |
|
$5$ |
$49152$ |
$0.859664$ |
$542939080312/404852175$ |
$0.89741$ |
$3.11275$ |
$[0, 1, 0, 1360, -9912]$ |
\(y^2=x^3+x^2+1360x-9912\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 56.24.0-56.v.1.4, 312.24.0.?, 2184.48.0.? |
$[(982, 30810)]$ |
| 87360.k4 |
87360dv3 |
87360.k |
87360dv |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \) |
\( - 2^{15} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot 13^{4} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.8 |
2B |
$2184$ |
$48$ |
$0$ |
$2.758780267$ |
$1$ |
|
$19$ |
$196608$ |
$1.206238$ |
$542939080312/404852175$ |
$0.89741$ |
$3.28864$ |
$[0, -1, 0, 5439, -84735]$ |
\(y^2=x^3-x^2+5439x-84735\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 28.12.0-4.c.1.2, 56.24.0-56.v.1.3, $\ldots$ |
$[(33, 360), (113, 1400)]$ |
| 87360.ev4 |
87360ga3 |
87360.ev |
87360ga |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \) |
\( - 2^{15} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot 13^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.7 |
2B |
$2184$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$196608$ |
$1.206238$ |
$542939080312/404852175$ |
$0.89741$ |
$3.28864$ |
$[0, 1, 0, 5439, 84735]$ |
\(y^2=x^3+x^2+5439x+84735\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 28.12.0-4.c.1.1, 56.24.0-56.v.1.2, $\ldots$ |
$[ ]$ |
| 131040.r4 |
131040dl3 |
131040.r |
131040dl |
$4$ |
$4$ |
\( 2^{5} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) |
\( - 2^{9} \cdot 3^{10} \cdot 5^{2} \cdot 7 \cdot 13^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2184$ |
$48$ |
$0$ |
$1.163055940$ |
$1$ |
|
$5$ |
$393216$ |
$1.408970$ |
$542939080312/404852175$ |
$0.89741$ |
$3.38194$ |
$[0, 0, 0, 12237, 279862]$ |
\(y^2=x^3+12237x+279862\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 56.12.0.v.1, 104.12.0.?, $\ldots$ |
$[(17, 702)]$ |
| 131040.ca4 |
131040cy3 |
131040.ca |
131040cy |
$4$ |
$4$ |
\( 2^{5} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) |
\( - 2^{9} \cdot 3^{10} \cdot 5^{2} \cdot 7 \cdot 13^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2184$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$393216$ |
$1.408970$ |
$542939080312/404852175$ |
$0.89741$ |
$3.38194$ |
$[0, 0, 0, 12237, -279862]$ |
\(y^2=x^3+12237x-279862\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 56.12.0.v.1, 104.12.0.?, $\ldots$ |
$[ ]$ |
| 218400.ca4 |
218400fc3 |
218400.ca |
218400fc |
$4$ |
$4$ |
\( 2^{5} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{9} \cdot 3^{4} \cdot 5^{8} \cdot 7 \cdot 13^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$10920$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1179648$ |
$1.664383$ |
$542939080312/404852175$ |
$0.89741$ |
$3.49072$ |
$[0, -1, 0, 33992, -1306988]$ |
\(y^2=x^3-x^2+33992x-1306988\) |
2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.2, 56.12.0.v.1, 280.24.0.?, $\ldots$ |
$[ ]$ |
| 218400.do4 |
218400dz3 |
218400.do |
218400dz |
$4$ |
$4$ |
\( 2^{5} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{9} \cdot 3^{4} \cdot 5^{8} \cdot 7 \cdot 13^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$10920$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1179648$ |
$1.664383$ |
$542939080312/404852175$ |
$0.89741$ |
$3.49072$ |
$[0, 1, 0, 33992, 1306988]$ |
\(y^2=x^3+x^2+33992x+1306988\) |
2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 56.12.0.v.1, 280.24.0.?, $\ldots$ |
$[ ]$ |
| 262080.ir4 |
262080ir3 |
262080.ir |
262080ir |
$4$ |
$4$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) |
\( - 2^{15} \cdot 3^{10} \cdot 5^{2} \cdot 7 \cdot 13^{4} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2184$ |
$48$ |
$0$ |
$7.412006284$ |
$1$ |
|
$11$ |
$1572864$ |
$1.755543$ |
$542939080312/404852175$ |
$0.89741$ |
$3.52739$ |
$[0, 0, 0, 48948, 2238896]$ |
\(y^2=x^3+48948x+2238896\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.2, 56.12.0.v.1, 84.12.0.?, $\ldots$ |
$[(37, 2025), (280, 6156)]$ |
| 262080.lt4 |
262080lt4 |
262080.lt |
262080lt |
$4$ |
$4$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) |
\( - 2^{15} \cdot 3^{10} \cdot 5^{2} \cdot 7 \cdot 13^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2184$ |
$48$ |
$0$ |
$2.521518596$ |
$1$ |
|
$5$ |
$1572864$ |
$1.755543$ |
$542939080312/404852175$ |
$0.89741$ |
$3.52739$ |
$[0, 0, 0, 48948, -2238896]$ |
\(y^2=x^3+48948x-2238896\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.1, 56.12.0.v.1, 84.12.0.?, $\ldots$ |
$[(213, 4225)]$ |
| 305760.x4 |
305760x3 |
305760.x |
305760x |
$4$ |
$4$ |
\( 2^{5} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{9} \cdot 3^{4} \cdot 5^{2} \cdot 7^{7} \cdot 13^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.8 |
2B |
$2184$ |
$48$ |
$0$ |
$1.492815546$ |
$1$ |
|
$3$ |
$2359296$ |
$1.832619$ |
$542939080312/404852175$ |
$0.89741$ |
$3.55757$ |
$[0, -1, 0, 66624, 3533076]$ |
\(y^2=x^3-x^2+66624x+3533076\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 28.12.0-4.c.1.2, 56.24.0-56.v.1.3, $\ldots$ |
$[(516, 13230)]$ |
| 305760.ev4 |
305760ev3 |
305760.ev |
305760ev |
$4$ |
$4$ |
\( 2^{5} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13 \) |
\( - 2^{9} \cdot 3^{4} \cdot 5^{2} \cdot 7^{7} \cdot 13^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.7 |
2B |
$2184$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$2359296$ |
$1.832619$ |
$542939080312/404852175$ |
$0.89741$ |
$3.55757$ |
$[0, 1, 0, 66624, -3533076]$ |
\(y^2=x^3+x^2+66624x-3533076\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 28.12.0-4.c.1.1, 56.24.0-56.v.1.2, $\ldots$ |
$[ ]$ |
| 436800.de4 |
436800de3 |
436800.de |
436800de |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{15} \cdot 3^{4} \cdot 5^{8} \cdot 7 \cdot 13^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$10920$ |
$48$ |
$0$ |
$1.205044514$ |
$1$ |
|
$7$ |
$4718592$ |
$2.010956$ |
$542939080312/404852175$ |
$0.89741$ |
$3.62464$ |
$[0, -1, 0, 135967, 10319937]$ |
\(y^2=x^3-x^2+135967x+10319937\) |
2.3.0.a.1, 4.6.0.c.1, 40.12.0-4.c.1.1, 56.12.0.v.1, 140.12.0.?, $\ldots$ |
$[(187, 6500)]$ |
| 436800.sb4 |
436800sb4 |
436800.sb |
436800sb |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \) |
\( - 2^{15} \cdot 3^{4} \cdot 5^{8} \cdot 7 \cdot 13^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$10920$ |
$48$ |
$0$ |
$2.149468911$ |
$1$ |
|
$3$ |
$4718592$ |
$2.010956$ |
$542939080312/404852175$ |
$0.89741$ |
$3.62464$ |
$[0, 1, 0, 135967, -10319937]$ |
\(y^2=x^3+x^2+135967x-10319937\) |
2.3.0.a.1, 4.6.0.c.1, 40.12.0-4.c.1.2, 56.12.0.v.1, 140.12.0.?, $\ldots$ |
$[(1113, 39000)]$ |