Learn more

Refine search


Results (25 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
1785.c1 1785.c \( 3 \cdot 5 \cdot 7 \cdot 17 \) $1$ $\Z/2\Z$ $1.081536815$ $[1, 0, 0, -1686, 26505]$ \(y^2+xy=x^3-1686x+26505\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.2, 28.12.0-4.c.1.1, 136.12.0.?, $\ldots$ $[(24, -9)]$
5355.r1 5355.r \( 3^{2} \cdot 5 \cdot 7 \cdot 17 \) $1$ $\Z/2\Z$ $5.702089431$ $[1, -1, 0, -15174, -715635]$ \(y^2+xy=x^3-x^2-15174x-715635\) 2.3.0.a.1, 4.6.0.c.1, 60.12.0-4.c.1.2, 84.12.0.?, 140.12.0.?, $\ldots$ $[(615/2, 5415/2)]$
8925.v1 8925.v \( 3 \cdot 5^{2} \cdot 7 \cdot 17 \) $0$ $\Z/4\Z$ $1$ $[1, 1, 0, -42150, 3313125]$ \(y^2+xy=x^3+x^2-42150x+3313125\) 2.3.0.a.1, 4.12.0-4.c.1.1, 140.24.0.?, 680.24.0.?, 952.24.0.?, $\ldots$ $[ ]$
12495.c1 12495.c \( 3 \cdot 5 \cdot 7^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -82615, -9173830]$ \(y^2+xy+y=x^3+x^2-82615x-9173830\) 2.3.0.a.1, 4.12.0-4.c.1.2, 140.24.0.?, 680.24.0.?, 952.24.0.?, $\ldots$ $[ ]$
26775.n1 26775.n \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -379355, -89833728]$ \(y^2+xy+y=x^3-x^2-379355x-89833728\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 140.12.0.?, 420.24.0.?, $\ldots$ $[ ]$
28560.e1 28560.e \( 2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 17 \) $2$ $\Z/2\Z$ $8.790006396$ $[0, -1, 0, -26976, -1696320]$ \(y^2=x^3-x^2-26976x-1696320\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 28.12.0-4.c.1.2, 136.12.0.?, $\ldots$ $[(-94, 2), (1061, 34102)]$
30345.f1 30345.f \( 3 \cdot 5 \cdot 7 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -487260, 130706322]$ \(y^2+xy+y=x^3+x^2-487260x+130706322\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 140.12.0.?, 280.24.0.?, $\ldots$ $[ ]$
37485.bd1 37485.bd \( 3^{2} \cdot 5 \cdot 7^{2} \cdot 17 \) $1$ $\Z/2\Z$ $7.115147442$ $[1, -1, 0, -743535, 246949870]$ \(y^2+xy=x^3-x^2-743535x+246949870\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 140.12.0.?, 420.24.0.?, $\ldots$ $[(9101/4, 160691/4)]$
62475.cm1 62475.cm \( 3 \cdot 5^{2} \cdot 7^{2} \cdot 17 \) $1$ $\Z/2\Z$ $7.577939865$ $[1, 0, 1, -2065376, -1142597977]$ \(y^2+xy+y=x^3-2065376x-1142597977\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 28.12.0-4.c.1.2, 136.12.0.?, $\ldots$ $[(20379/2, 2757623/2)]$
85680.dp1 85680.dp \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 17 \) $1$ $\Z/2\Z$ $2.552131074$ $[0, 0, 0, -242787, 46043426]$ \(y^2=x^3-242787x+46043426\) 2.3.0.a.1, 4.6.0.c.1, 60.12.0-4.c.1.1, 84.12.0.?, 140.12.0.?, $\ldots$ $[(295, 306)]$
91035.bi1 91035.bi \( 3^{2} \cdot 5 \cdot 7 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -4385340, -3533456039]$ \(y^2+xy=x^3-x^2-4385340x-3533456039\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 140.12.0.?, 680.12.0.?, $\ldots$ $[ ]$
114240.fb1 114240.fb \( 2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 17 \) $1$ $\Z/2\Z$ $5.079430248$ $[0, -1, 0, -107905, 13678465]$ \(y^2=x^3-x^2-107905x+13678465\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0-4.c.1.2, 56.12.0-4.c.1.2, 136.12.0.?, $\ldots$ $[(2792, 146523)]$
114240.ji1 114240.ji \( 2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -107905, -13678465]$ \(y^2=x^3+x^2-107905x-13678465\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0-4.c.1.1, 56.12.0-4.c.1.1, 136.12.0.?, $\ldots$ $[ ]$
142800.in1 142800.in \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17 \) $1$ $\Z/2\Z$ $3.891939427$ $[0, 1, 0, -674408, -213388812]$ \(y^2=x^3+x^2-674408x-213388812\) 2.3.0.a.1, 4.12.0-4.c.1.2, 140.24.0.?, 680.24.0.?, 952.24.0.?, $\ldots$ $[(-473, 78)]$
151725.cx1 151725.cx \( 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $14.69399311$ $[1, 0, 1, -12181501, 16362653273]$ \(y^2+xy+y=x^3-12181501x+16362653273\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0-4.c.1.5, 56.12.0-4.c.1.3, 68.12.0-4.c.1.2, $\ldots$ $[(4537459/22, 9023630513/22)]$
187425.bl1 187425.bl \( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) $2$ $\Z/2\Z$ $1.327503006$ $[1, -1, 1, -18588380, 30850145372]$ \(y^2+xy+y=x^3-x^2-18588380x+30850145372\) 2.3.0.a.1, 4.6.0.c.1, 60.12.0-4.c.1.1, 84.12.0.?, 140.12.0.?, $\ldots$ $[(2424, 4300), (2473, -404)]$
199920.hc1 199920.hc \( 2^{4} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 17 \) $0$ $\Z/4\Z$ $1$ $[0, 1, 0, -1321840, 584481428]$ \(y^2=x^3+x^2-1321840x+584481428\) 2.3.0.a.1, 4.12.0-4.c.1.1, 140.24.0.?, 680.24.0.?, 952.24.0.?, $\ldots$ $[ ]$
212415.w1 212415.w \( 3 \cdot 5 \cdot 7^{2} \cdot 17^{2} \) $1$ $\Z/2\Z$ $9.790938252$ $[1, 0, 0, -23875741, -44903895730]$ \(y^2+xy=x^3-23875741x-44903895730\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0-4.c.1.3, 56.12.0-4.c.1.5, 68.12.0-4.c.1.1, $\ldots$ $[(213854, 98762480)]$
215985.bu1 215985.bu \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -204009, -35482163]$ \(y^2+xy+y=x^3-204009x-35482163\) 2.3.0.a.1, 4.6.0.c.1, 140.12.0.?, 220.12.0.?, 308.12.0.?, $\ldots$ $[ ]$
301665.ca1 301665.ca \( 3 \cdot 5 \cdot 7 \cdot 13^{2} \cdot 17 \) $1$ $\Z/2\Z$ $5.026298774$ $[1, 0, 1, -284938, 58516421]$ \(y^2+xy+y=x^3-284938x+58516421\) 2.3.0.a.1, 4.6.0.c.1, 140.12.0.?, 260.12.0.?, 364.12.0.?, $\ldots$ $[(3943/2, 213049/2)]$
342720.cp1 342720.cp \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -971148, 368347408]$ \(y^2=x^3-971148x+368347408\) 2.3.0.a.1, 4.6.0.c.1, 120.12.0.?, 140.12.0.?, 168.12.0.?, $\ldots$ $[ ]$
342720.gb1 342720.gb \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -971148, -368347408]$ \(y^2=x^3-971148x-368347408\) 2.3.0.a.1, 4.6.0.c.1, 120.12.0.?, 140.12.0.?, 168.12.0.?, $\ldots$ $[ ]$
428400.lv1 428400.lv \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -6069675, 5755428250]$ \(y^2=x^3-6069675x+5755428250\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 140.12.0.?, 420.24.0.?, $\ldots$ $[ ]$
455175.ce1 455175.ce \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $4.278581771$ $[1, -1, 1, -109633505, -441791638378]$ \(y^2+xy+y=x^3-x^2-109633505x-441791638378\) 2.3.0.a.1, 4.6.0.c.1, 120.12.0.?, 140.12.0.?, 168.12.0.?, $\ldots$ $[(-6021, 85)]$
485520.hz1 485520.hz \( 2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $7.862503052$ $[0, 1, 0, -7796160, -8380796940]$ \(y^2=x^3+x^2-7796160x-8380796940\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 140.12.0.?, 280.24.0.?, $\ldots$ $[(-14489/3, 15490/3)]$
  displayed columns for results