| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 8040.g2 |
8040f2 |
8040.g |
8040f |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 67 \) |
\( 2^{10} \cdot 3^{2} \cdot 5^{4} \cdot 67^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.1 |
2Cs |
$1608$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$8192$ |
$0.758197$ |
$527178079876/25250625$ |
$0.88598$ |
$3.77242$ |
$[0, 1, 0, -1696, -26320]$ |
\(y^2=x^3+x^2-1696x-26320\) |
2.6.0.a.1, 8.12.0-2.a.1.1, 12.12.0-2.a.1.1, 24.24.0-24.b.1.2, 268.12.0.?, $\ldots$ |
$[ ]$ |
| 16080.i2 |
16080b2 |
16080.i |
16080b |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 67 \) |
\( 2^{10} \cdot 3^{2} \cdot 5^{4} \cdot 67^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.1 |
2Cs |
$1608$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$16384$ |
$0.758197$ |
$527178079876/25250625$ |
$0.88598$ |
$3.50244$ |
$[0, -1, 0, -1696, 26320]$ |
\(y^2=x^3-x^2-1696x+26320\) |
2.6.0.a.1, 8.12.0-2.a.1.1, 12.12.0-2.a.1.1, 24.24.0-24.b.1.3, 268.12.0.?, $\ldots$ |
$[ ]$ |
| 24120.o2 |
24120w2 |
24120.o |
24120w |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 5 \cdot 67 \) |
\( 2^{10} \cdot 3^{8} \cdot 5^{4} \cdot 67^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$1608$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$65536$ |
$1.307503$ |
$527178079876/25250625$ |
$0.88598$ |
$4.01494$ |
$[0, 0, 0, -15267, 695374]$ |
\(y^2=x^3-15267x+695374\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 24.24.0-24.b.1.4, 536.24.0.?, 804.24.0.?, $\ldots$ |
$[ ]$ |
| 40200.q2 |
40200x2 |
40200.q |
40200x |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5^{2} \cdot 67 \) |
\( 2^{10} \cdot 3^{2} \cdot 5^{10} \cdot 67^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$8040$ |
$48$ |
$0$ |
$8.303619087$ |
$1$ |
|
$3$ |
$196608$ |
$1.562916$ |
$527178079876/25250625$ |
$0.88598$ |
$4.11059$ |
$[0, -1, 0, -42408, -3205188]$ |
\(y^2=x^3-x^2-42408x-3205188\) |
2.6.0.a.1, 24.12.0.b.1, 40.12.0-2.a.1.1, 60.12.0-2.a.1.1, 120.24.0.?, $\ldots$ |
$[(-37347/17, 1556100/17)]$ |
| 48240.cc2 |
48240x2 |
48240.cc |
48240x |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 67 \) |
\( 2^{10} \cdot 3^{8} \cdot 5^{4} \cdot 67^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$1608$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$131072$ |
$1.307503$ |
$527178079876/25250625$ |
$0.88598$ |
$3.75688$ |
$[0, 0, 0, -15267, -695374]$ |
\(y^2=x^3-15267x-695374\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 24.24.0-24.b.1.1, 536.24.0.?, 804.24.0.?, $\ldots$ |
$[ ]$ |
| 64320.t2 |
64320t2 |
64320.t |
64320t |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 67 \) |
\( 2^{16} \cdot 3^{2} \cdot 5^{4} \cdot 67^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$1608$ |
$48$ |
$0$ |
$2.082498219$ |
$1$ |
|
$9$ |
$131072$ |
$1.104771$ |
$527178079876/25250625$ |
$0.88598$ |
$3.43953$ |
$[0, -1, 0, -6785, -203775]$ |
\(y^2=x^3-x^2-6785x-203775\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 24.24.0-24.b.1.1, 536.24.0.?, 804.24.0.?, $\ldots$ |
$[(-40, 45)]$ |
| 64320.cw2 |
64320cq2 |
64320.cw |
64320cq |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 67 \) |
\( 2^{16} \cdot 3^{2} \cdot 5^{4} \cdot 67^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$1608$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$131072$ |
$1.104771$ |
$527178079876/25250625$ |
$0.88598$ |
$3.43953$ |
$[0, 1, 0, -6785, 203775]$ |
\(y^2=x^3+x^2-6785x+203775\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 24.24.0-24.b.1.4, 536.24.0.?, 804.24.0.?, $\ldots$ |
$[ ]$ |
| 80400.ce2 |
80400bc2 |
80400.ce |
80400bc |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 67 \) |
\( 2^{10} \cdot 3^{2} \cdot 5^{10} \cdot 67^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$8040$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$393216$ |
$1.562916$ |
$527178079876/25250625$ |
$0.88598$ |
$3.85833$ |
$[0, 1, 0, -42408, 3205188]$ |
\(y^2=x^3+x^2-42408x+3205188\) |
2.6.0.a.1, 24.12.0.b.1, 40.12.0-2.a.1.1, 60.12.0-2.a.1.1, 120.24.0.?, $\ldots$ |
$[ ]$ |
| 120600.cj2 |
120600u2 |
120600.cj |
120600u |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 67 \) |
\( 2^{10} \cdot 3^{8} \cdot 5^{10} \cdot 67^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$8040$ |
$48$ |
$0$ |
$6.922792701$ |
$1$ |
|
$3$ |
$1572864$ |
$2.112221$ |
$527178079876/25250625$ |
$0.88598$ |
$4.28800$ |
$[0, 0, 0, -381675, 86921750]$ |
\(y^2=x^3-381675x+86921750\) |
2.6.0.a.1, 20.12.0-2.a.1.1, 24.12.0.b.1, 120.24.0.?, 536.12.0.?, $\ldots$ |
$[(5210/7, 2365000/7)]$ |
| 192960.f2 |
192960ea2 |
192960.f |
192960ea |
$4$ |
$4$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 67 \) |
\( 2^{16} \cdot 3^{8} \cdot 5^{4} \cdot 67^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.1 |
2Cs |
$1608$ |
$48$ |
$0$ |
$2.646372999$ |
$1$ |
|
$9$ |
$1048576$ |
$1.654078$ |
$527178079876/25250625$ |
$0.88598$ |
$3.67066$ |
$[0, 0, 0, -61068, 5562992]$ |
\(y^2=x^3-61068x+5562992\) |
2.6.0.a.1, 8.12.0-2.a.1.1, 12.12.0-2.a.1.1, 24.24.0-24.b.1.3, 268.12.0.?, $\ldots$ |
$[(116, 200)]$ |
| 192960.cu2 |
192960bz2 |
192960.cu |
192960bz |
$4$ |
$4$ |
\( 2^{6} \cdot 3^{2} \cdot 5 \cdot 67 \) |
\( 2^{16} \cdot 3^{8} \cdot 5^{4} \cdot 67^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.1 |
2Cs |
$1608$ |
$48$ |
$0$ |
$7.274175863$ |
$1$ |
|
$3$ |
$1048576$ |
$1.654078$ |
$527178079876/25250625$ |
$0.88598$ |
$3.67066$ |
$[0, 0, 0, -61068, -5562992]$ |
\(y^2=x^3-61068x-5562992\) |
2.6.0.a.1, 8.12.0-2.a.1.1, 12.12.0-2.a.1.1, 24.24.0-24.b.1.2, 268.12.0.?, $\ldots$ |
$[(11456/5, 989604/5)]$ |
| 241200.f2 |
241200f2 |
241200.f |
241200f |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 67 \) |
\( 2^{10} \cdot 3^{8} \cdot 5^{10} \cdot 67^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$8040$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$3145728$ |
$2.112221$ |
$527178079876/25250625$ |
$0.88598$ |
$4.04817$ |
$[0, 0, 0, -381675, -86921750]$ |
\(y^2=x^3-381675x-86921750\) |
2.6.0.a.1, 20.12.0-2.a.1.1, 24.12.0.b.1, 120.24.0.?, 536.12.0.?, $\ldots$ |
$[ ]$ |
| 321600.e2 |
321600e2 |
321600.e |
321600e |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 67 \) |
\( 2^{16} \cdot 3^{2} \cdot 5^{10} \cdot 67^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$8040$ |
$48$ |
$0$ |
$2.401548486$ |
$1$ |
|
$9$ |
$3145728$ |
$1.909491$ |
$527178079876/25250625$ |
$0.88598$ |
$3.76449$ |
$[0, -1, 0, -169633, 25811137]$ |
\(y^2=x^3-x^2-169633x+25811137\) |
2.6.0.a.1, 20.12.0-2.a.1.1, 24.12.0.b.1, 120.24.0.?, 536.12.0.?, $\ldots$ |
$[(152, 1875)]$ |
| 321600.jn2 |
321600jn2 |
321600.jn |
321600jn |
$4$ |
$4$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 67 \) |
\( 2^{16} \cdot 3^{2} \cdot 5^{10} \cdot 67^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$8040$ |
$48$ |
$0$ |
$1$ |
$9$ |
$3$ |
$3$ |
$3145728$ |
$1.909491$ |
$527178079876/25250625$ |
$0.88598$ |
$3.76449$ |
$[0, 1, 0, -169633, -25811137]$ |
\(y^2=x^3+x^2-169633x-25811137\) |
2.6.0.a.1, 20.12.0-2.a.1.1, 24.12.0.b.1, 120.24.0.?, 536.12.0.?, $\ldots$ |
$[ ]$ |
| 393960.q2 |
393960q2 |
393960.q |
393960q |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 67 \) |
\( 2^{10} \cdot 3^{2} \cdot 5^{4} \cdot 7^{6} \cdot 67^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$11256$ |
$48$ |
$0$ |
$1.639935733$ |
$1$ |
|
$9$ |
$2359296$ |
$1.731152$ |
$527178079876/25250625$ |
$0.88598$ |
$3.53910$ |
$[0, -1, 0, -83120, 8861532]$ |
\(y^2=x^3-x^2-83120x+8861532\) |
2.6.0.a.1, 24.12.0.b.1, 56.12.0-2.a.1.1, 84.12.0.?, 168.24.0.?, $\ldots$ |
$[(89, 1470)]$ |