Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
12090.q1 |
12090q1 |
12090.q |
12090q |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 31 \) |
\( - 2^{2} \cdot 3^{17} \cdot 5^{11} \cdot 13^{3} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$24180$ |
$2$ |
$0$ |
$0.035077718$ |
$1$ |
|
$16$ |
$628320$ |
$2.757660$ |
$504654146753383024121879/1717841617468945312500$ |
$1.01213$ |
$5.97478$ |
$[1, 0, 1, 1658657, 1816853558]$ |
\(y^2+xy+y=x^3+1658657x+1816853558\) |
24180.2.0.? |
$[(-731, 14990)]$ |
36270.bh1 |
36270bo1 |
36270.bh |
36270bo |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13 \cdot 31 \) |
\( - 2^{2} \cdot 3^{23} \cdot 5^{11} \cdot 13^{3} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24180$ |
$2$ |
$0$ |
$7.530205016$ |
$1$ |
|
$0$ |
$5026560$ |
$3.306965$ |
$504654146753383024121879/1717841617468945312500$ |
$1.01213$ |
$5.97742$ |
$[1, -1, 1, 14927917, -49055046073]$ |
\(y^2+xy+y=x^3-x^2+14927917x-49055046073\) |
24180.2.0.? |
$[(3286059/2, 5953577057/2)]$ |
60450.cb1 |
60450bu1 |
60450.cb |
60450bu |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 13 \cdot 31 \) |
\( - 2^{2} \cdot 3^{17} \cdot 5^{17} \cdot 13^{3} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24180$ |
$2$ |
$0$ |
$24.00902153$ |
$1$ |
|
$0$ |
$15079680$ |
$3.562378$ |
$504654146753383024121879/1717841617468945312500$ |
$1.01213$ |
$5.97847$ |
$[1, 1, 1, 41466437, 227106694781]$ |
\(y^2+xy+y=x^3+x^2+41466437x+227106694781\) |
24180.2.0.? |
$[(12317037128155/26207, 46563704012175643836/26207)]$ |
96720.bv1 |
96720cg1 |
96720.bv |
96720cg |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 31 \) |
\( - 2^{14} \cdot 3^{17} \cdot 5^{11} \cdot 13^{3} \cdot 31 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24180$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$15079680$ |
$3.450806$ |
$504654146753383024121879/1717841617468945312500$ |
$1.01213$ |
$5.61706$ |
$[0, -1, 0, 26538520, -116278627728]$ |
\(y^2=x^3-x^2+26538520x-116278627728\) |
24180.2.0.? |
$[ ]$ |
157170.cs1 |
157170x1 |
157170.cs |
157170x |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 13^{2} \cdot 31 \) |
\( - 2^{2} \cdot 3^{17} \cdot 5^{11} \cdot 13^{9} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24180$ |
$2$ |
$0$ |
$3.679226647$ |
$1$ |
|
$2$ |
$105557760$ |
$4.040138$ |
$504654146753383024121879/1717841617468945312500$ |
$1.01213$ |
$5.98019$ |
$[1, 0, 0, 280313114, 3991346954360]$ |
\(y^2+xy=x^3+280313114x+3991346954360\) |
24180.2.0.? |
$[(17876, 3827024)]$ |
181350.bu1 |
181350ed1 |
181350.bu |
181350ed |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 31 \) |
\( - 2^{2} \cdot 3^{23} \cdot 5^{17} \cdot 13^{3} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24180$ |
$2$ |
$0$ |
$41.00320085$ |
$1$ |
|
$0$ |
$120637440$ |
$4.111687$ |
$504654146753383024121879/1717841617468945312500$ |
$1.01213$ |
$5.98042$ |
$[1, -1, 0, 373197933, -6131507561159]$ |
\(y^2+xy=x^3-x^2+373197933x-6131507561159\) |
24180.2.0.? |
$[(4529605080904089624/916559, 9638284296417517182467919067/916559)]$ |
290160.bx1 |
290160bx1 |
290160.bx |
290160bx |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 31 \) |
\( - 2^{14} \cdot 3^{23} \cdot 5^{11} \cdot 13^{3} \cdot 31 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24180$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$120637440$ |
$4.000114$ |
$504654146753383024121879/1717841617468945312500$ |
$1.01213$ |
$5.65051$ |
$[0, 0, 0, 238846677, 3139284101978]$ |
\(y^2=x^3+238846677x+3139284101978\) |
24180.2.0.? |
$[ ]$ |
374790.v1 |
374790v1 |
374790.v |
374790v |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 31^{2} \) |
\( - 2^{2} \cdot 3^{17} \cdot 5^{11} \cdot 13^{3} \cdot 31^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24180$ |
$2$ |
$0$ |
$8.789056066$ |
$1$ |
|
$0$ |
$603187200$ |
$4.474655$ |
$504654146753383024121879/1717841617468945312500$ |
$1.01213$ |
$5.98153$ |
$[1, 1, 0, 1593969838, -54121102444296]$ |
\(y^2+xy=x^3+x^2+1593969838x-54121102444296\) |
24180.2.0.? |
$[(7399798/9, 21269788534/9)]$ |
386880.r1 |
386880r1 |
386880.r |
386880r |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13 \cdot 31 \) |
\( - 2^{20} \cdot 3^{17} \cdot 5^{11} \cdot 13^{3} \cdot 31 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24180$ |
$2$ |
$0$ |
$1$ |
$25$ |
$5$ |
$0$ |
$120637440$ |
$3.797382$ |
$504654146753383024121879/1717841617468945312500$ |
$1.01213$ |
$5.33508$ |
$[0, -1, 0, 106154079, 930122867745]$ |
\(y^2=x^3-x^2+106154079x+930122867745\) |
24180.2.0.? |
$[ ]$ |
386880.fw1 |
386880fw1 |
386880.fw |
386880fw |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 5 \cdot 13 \cdot 31 \) |
\( - 2^{20} \cdot 3^{17} \cdot 5^{11} \cdot 13^{3} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24180$ |
$2$ |
$0$ |
$5.957849752$ |
$1$ |
|
$2$ |
$120637440$ |
$3.797382$ |
$504654146753383024121879/1717841617468945312500$ |
$1.01213$ |
$5.33508$ |
$[0, 1, 0, 106154079, -930122867745]$ |
\(y^2=x^3+x^2+106154079x-930122867745\) |
24180.2.0.? |
$[(23271, 3760704)]$ |
471510.cg1 |
471510cg1 |
471510.cg |
471510cg |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 31 \) |
\( - 2^{2} \cdot 3^{23} \cdot 5^{11} \cdot 13^{9} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24180$ |
$2$ |
$0$ |
$1.682914766$ |
$1$ |
|
$4$ |
$844462080$ |
$4.589439$ |
$504654146753383024121879/1717841617468945312500$ |
$1.01213$ |
$5.98185$ |
$[1, -1, 0, 2522818026, -107766367767720]$ |
\(y^2+xy=x^3-x^2+2522818026x-107766367767720\) |
24180.2.0.? |
$[(65631, 18419997)]$ |
483600.fa1 |
483600fa1 |
483600.fa |
483600fa |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13 \cdot 31 \) |
\( - 2^{14} \cdot 3^{17} \cdot 5^{17} \cdot 13^{3} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$24180$ |
$2$ |
$0$ |
$3.829648982$ |
$1$ |
|
$2$ |
$361912320$ |
$4.255524$ |
$504654146753383024121879/1717841617468945312500$ |
$1.01213$ |
$5.66415$ |
$[0, 1, 0, 663462992, -14533501540012]$ |
\(y^2=x^3+x^2+663462992x-14533501540012\) |
24180.2.0.? |
$[(565868, 426093750)]$ |