Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
112632.f1 |
112632p1 |
112632.f |
112632p |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( - 2^{4} \cdot 3^{12} \cdot 13 \cdot 19^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$2.766320590$ |
$1$ |
|
$0$ |
$2188800$ |
$2.432468$ |
$500000000/6908733$ |
$1.12427$ |
$4.50768$ |
$[0, -1, 0, 285792, 281171241]$ |
\(y^2=x^3-x^2+285792x+281171241\) |
494.2.0.? |
$[(-10212/7, 5000211/7)]$ |
112632.u1 |
112632g1 |
112632.u |
112632g |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( - 2^{4} \cdot 3^{12} \cdot 13 \cdot 19^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$0.620957834$ |
$1$ |
|
$16$ |
$115200$ |
$0.960248$ |
$500000000/6908733$ |
$1.12427$ |
$2.98887$ |
$[0, 1, 0, 792, -40743]$ |
\(y^2=x^3+x^2+792x-40743\) |
494.2.0.? |
$[(63, 513), (576, 13851)]$ |
225264.t1 |
225264co1 |
225264.t |
225264co |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( - 2^{4} \cdot 3^{12} \cdot 13 \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$2.443863558$ |
$1$ |
|
$0$ |
$230400$ |
$0.960248$ |
$500000000/6908733$ |
$1.12427$ |
$2.82078$ |
$[0, -1, 0, 792, 40743]$ |
\(y^2=x^3-x^2+792x+40743\) |
494.2.0.? |
$[(-549/5, 13851/5)]$ |
225264.ce1 |
225264ca1 |
225264.ce |
225264ca |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 13 \cdot 19^{2} \) |
\( - 2^{4} \cdot 3^{12} \cdot 13 \cdot 19^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$4.559179183$ |
$1$ |
|
$0$ |
$4377600$ |
$2.432468$ |
$500000000/6908733$ |
$1.12427$ |
$4.25417$ |
$[0, 1, 0, 285792, -281171241]$ |
\(y^2=x^3+x^2+285792x-281171241\) |
494.2.0.? |
$[(13833/4, 1584429/4)]$ |
337896.s1 |
337896s1 |
337896.s |
337896s |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) |
\( - 2^{4} \cdot 3^{18} \cdot 13 \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$2.591517008$ |
$1$ |
|
$2$ |
$921600$ |
$1.509554$ |
$500000000/6908733$ |
$1.12427$ |
$3.24872$ |
$[0, 0, 0, 7125, 1107187]$ |
\(y^2=x^3+7125x+1107187\) |
494.2.0.? |
$[(38, 1197)]$ |
337896.t1 |
337896t1 |
337896.t |
337896t |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2} \) |
\( - 2^{4} \cdot 3^{18} \cdot 13 \cdot 19^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$494$ |
$2$ |
$0$ |
$16.95617102$ |
$1$ |
|
$0$ |
$17510400$ |
$2.981773$ |
$500000000/6908733$ |
$1.12427$ |
$4.63646$ |
$[0, 0, 0, 2572125, -7594195633]$ |
\(y^2=x^3+2572125x-7594195633\) |
494.2.0.? |
$[(83218831/107, 770053350843/107)]$ |