Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
30030.bb3 |
30030bb2 |
30030.bb |
30030bb |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) |
\( 2^{10} \cdot 3^{8} \cdot 5^{10} \cdot 7^{2} \cdot 11^{4} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.12.0.1 |
2Cs |
$3640$ |
$48$ |
$0$ |
$2.547929229$ |
$1$ |
|
$8$ |
$3686400$ |
$3.098160$ |
$4788502600127122071579248929/7954695558810000000000$ |
$1.00495$ |
$6.18199$ |
$[1, 1, 1, -35114946, -79991038257]$ |
\(y^2+xy+y=x^3+x^2-35114946x-79991038257\) |
2.6.0.a.1, 8.12.0-2.a.1.1, 28.12.0-2.a.1.1, 56.24.0-56.b.1.4, 260.12.0.?, $\ldots$ |
$[(-3351, 9683)]$ |
90090.be3 |
90090bi2 |
90090.be |
90090bi |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) |
\( 2^{10} \cdot 3^{14} \cdot 5^{10} \cdot 7^{2} \cdot 11^{4} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$10920$ |
$48$ |
$0$ |
$1.754864871$ |
$1$ |
|
$12$ |
$29491200$ |
$3.647469$ |
$4788502600127122071579248929/7954695558810000000000$ |
$1.00495$ |
$6.16446$ |
$[1, -1, 0, -316034514, 2159441998420]$ |
\(y^2+xy=x^3-x^2-316034514x+2159441998420\) |
2.6.0.a.1, 24.12.0-2.a.1.1, 56.12.0.b.1, 84.12.0.?, 168.24.0.?, $\ldots$ |
$[(9851, 40637)]$ |
150150.dh3 |
150150dz2 |
150150.dh |
150150dz |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \) |
\( 2^{10} \cdot 3^{8} \cdot 5^{16} \cdot 7^{2} \cdot 11^{4} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$3640$ |
$48$ |
$0$ |
$4.407515206$ |
$1$ |
|
$8$ |
$88473600$ |
$3.902882$ |
$4788502600127122071579248929/7954695558810000000000$ |
$1.00495$ |
$6.15742$ |
$[1, 0, 1, -877873651, -9997124034802]$ |
\(y^2+xy+y=x^3-877873651x-9997124034802\) |
2.6.0.a.1, 40.12.0-2.a.1.1, 52.12.0-2.a.1.1, 56.12.0.b.1, 140.12.0.?, $\ldots$ |
$[(-16577, 20432)]$ |
210210.fl3 |
210210d2 |
210210.fl |
210210d |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 11 \cdot 13 \) |
\( 2^{10} \cdot 3^{8} \cdot 5^{10} \cdot 7^{8} \cdot 11^{4} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$3640$ |
$48$ |
$0$ |
$0.214276174$ |
$1$ |
|
$30$ |
$176947200$ |
$4.071114$ |
$4788502600127122071579248929/7954695558810000000000$ |
$1.00495$ |
$6.15309$ |
$[1, 0, 0, -1720632355, 27431764225025]$ |
\(y^2+xy=x^3-1720632355x+27431764225025\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 56.24.0-56.b.1.2, 520.24.0.?, 1820.24.0.?, $\ldots$ |
$[(22310, 374945)]$ |
240240.ew3 |
240240ew2 |
240240.ew |
240240ew |
$4$ |
$4$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \) |
\( 2^{22} \cdot 3^{8} \cdot 5^{10} \cdot 7^{2} \cdot 11^{4} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.1 |
2Cs |
$3640$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$88473600$ |
$3.791309$ |
$4788502600127122071579248929/7954695558810000000000$ |
$1.00495$ |
$5.81576$ |
$[0, 1, 0, -561839136, 5118302770164]$ |
\(y^2=x^3+x^2-561839136x+5118302770164\) |
2.6.0.a.1, 8.12.0-2.a.1.1, 28.12.0-2.a.1.1, 56.24.0-56.b.1.3, 260.12.0.?, $\ldots$ |
$[ ]$ |
330330.m3 |
330330m2 |
330330.m |
330330m |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) |
\( 2^{10} \cdot 3^{8} \cdot 5^{10} \cdot 7^{2} \cdot 11^{10} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$40040$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$442368000$ |
$4.297112$ |
$4788502600127122071579248929/7954695558810000000000$ |
$1.00495$ |
$6.14765$ |
$[1, 1, 0, -4248908468, 106446827377488]$ |
\(y^2+xy=x^3+x^2-4248908468x+106446827377488\) |
2.6.0.a.1, 56.12.0.b.1, 88.12.0.?, 308.12.0.?, 520.12.0.?, $\ldots$ |
$[ ]$ |
390390.y3 |
390390y2 |
390390.y |
390390y |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13^{2} \) |
\( 2^{10} \cdot 3^{8} \cdot 5^{10} \cdot 7^{2} \cdot 11^{4} \cdot 13^{8} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$3640$ |
$48$ |
$0$ |
$5.710741463$ |
$1$ |
|
$6$ |
$619315200$ |
$4.380638$ |
$4788502600127122071579248929/7954695558810000000000$ |
$1.00495$ |
$6.14573$ |
$[1, 1, 0, -5934425877, -175710638920851]$ |
\(y^2+xy=x^3+x^2-5934425877x-175710638920851\) |
2.6.0.a.1, 20.12.0-2.a.1.1, 56.12.0.b.1, 104.12.0.?, 280.24.0.?, $\ldots$ |
$[(-45622, 298891)]$ |
450450.kc3 |
450450kc2 |
450450.kc |
450450kc |
$4$ |
$4$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \) |
\( 2^{10} \cdot 3^{14} \cdot 5^{16} \cdot 7^{2} \cdot 11^{4} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$10920$ |
$48$ |
$0$ |
$5.171023719$ |
$1$ |
|
$4$ |
$707788800$ |
$4.452187$ |
$4788502600127122071579248929/7954695558810000000000$ |
$1.00495$ |
$6.14413$ |
$[1, -1, 1, -7900862855, 269922348939647]$ |
\(y^2+xy+y=x^3-x^2-7900862855x+269922348939647\) |
2.6.0.a.1, 56.12.0.b.1, 120.12.0.?, 156.12.0.?, 420.12.0.?, $\ldots$ |
$[(30499, 7555950)]$ |