Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
726.a1 |
726b1 |
726.a |
726b |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 11^{2} \) |
\( - 2^{10} \cdot 3^{4} \cdot 11^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$44$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5280$ |
$1.626667$ |
$43307231/82944$ |
$1.06329$ |
$6.43636$ |
$[1, 1, 0, 21657, -1855179]$ |
\(y^2+xy=x^3+x^2+21657x-1855179\) |
4.8.0.b.1, 44.16.0-4.b.1.1 |
$[ ]$ |
726.f1 |
726g1 |
726.f |
726g |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 11^{2} \) |
\( - 2^{10} \cdot 3^{4} \cdot 11^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.16.0.2 |
|
$4$ |
$16$ |
$0$ |
$0.039177980$ |
$1$ |
|
$14$ |
$480$ |
$0.427720$ |
$43307231/82944$ |
$1.06329$ |
$4.25233$ |
$[1, 1, 1, 179, 1475]$ |
\(y^2+xy+y=x^3+x^2+179x+1475\) |
4.16.0-4.b.1.1 |
$[(17, 90)]$ |
2178.d1 |
2178e1 |
2178.d |
2178e |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 11^{2} \) |
\( - 2^{10} \cdot 3^{10} \cdot 11^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$12$ |
$16$ |
$0$ |
$1.216364070$ |
$1$ |
|
$4$ |
$3840$ |
$0.977026$ |
$43307231/82944$ |
$1.06329$ |
$4.50213$ |
$[1, -1, 0, 1611, -38219]$ |
\(y^2+xy=x^3-x^2+1611x-38219\) |
4.8.0.b.1, 12.16.0-4.b.1.1 |
$[(26, 131)]$ |
2178.k1 |
2178i1 |
2178.k |
2178i |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 11^{2} \) |
\( - 2^{10} \cdot 3^{10} \cdot 11^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$132$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$42240$ |
$2.175972$ |
$43307231/82944$ |
$1.06329$ |
$6.37399$ |
$[1, -1, 1, 194908, 50284743]$ |
\(y^2+xy+y=x^3-x^2+194908x+50284743\) |
4.8.0.b.1, 132.16.0.? |
$[ ]$ |
5808.u1 |
5808bd1 |
5808.u |
5808bd |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 11^{2} \) |
\( - 2^{22} \cdot 3^{4} \cdot 11^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$44$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$126720$ |
$2.319817$ |
$43307231/82944$ |
$1.06329$ |
$5.85181$ |
$[0, 1, 0, 346504, 119424468]$ |
\(y^2=x^3+x^2+346504x+119424468\) |
4.8.0.b.1, 44.16.0-4.b.1.1 |
$[ ]$ |
5808.z1 |
5808bc1 |
5808.z |
5808bc |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 11^{2} \) |
\( - 2^{22} \cdot 3^{4} \cdot 11^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.16.0.2 |
|
$4$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$11520$ |
$1.120867$ |
$43307231/82944$ |
$1.06329$ |
$4.19179$ |
$[0, 1, 0, 2864, -88684]$ |
\(y^2=x^3+x^2+2864x-88684\) |
4.16.0-4.b.1.1 |
$[ ]$ |
17424.bl1 |
17424br1 |
17424.bl |
17424br |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 11^{2} \) |
\( - 2^{22} \cdot 3^{10} \cdot 11^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$132$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1013760$ |
$2.869122$ |
$43307231/82944$ |
$1.06329$ |
$5.86848$ |
$[0, 0, 0, 3118533, -3221342102]$ |
\(y^2=x^3+3118533x-3221342102\) |
4.8.0.b.1, 132.16.0.? |
$[ ]$ |
17424.bq1 |
17424bp1 |
17424.bq |
17424bp |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 11^{2} \) |
\( - 2^{22} \cdot 3^{10} \cdot 11^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$12$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$92160$ |
$1.670174$ |
$43307231/82944$ |
$1.06329$ |
$4.39521$ |
$[0, 0, 0, 25773, 2420242]$ |
\(y^2=x^3+25773x+2420242\) |
4.8.0.b.1, 12.16.0-4.b.1.1 |
$[ ]$ |
18150.br1 |
18150bh1 |
18150.br |
18150bh |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{10} \cdot 3^{4} \cdot 5^{6} \cdot 11^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$20$ |
$16$ |
$0$ |
$0.449141660$ |
$1$ |
|
$6$ |
$67200$ |
$1.232439$ |
$43307231/82944$ |
$1.06329$ |
$3.84127$ |
$[1, 0, 1, 4474, 175448]$ |
\(y^2+xy+y=x^3+4474x+175448\) |
4.8.0.b.1, 20.16.0-4.b.1.1 |
$[(21, 517)]$ |
18150.cp1 |
18150db1 |
18150.cp |
18150db |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{10} \cdot 3^{4} \cdot 5^{6} \cdot 11^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$220$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$739200$ |
$2.431385$ |
$43307231/82944$ |
$1.06329$ |
$5.30840$ |
$[1, 0, 0, 541412, -232980208]$ |
\(y^2+xy=x^3+541412x-232980208\) |
4.8.0.b.1, 220.16.0.? |
$[ ]$ |
23232.bb1 |
23232cy1 |
23232.bb |
23232cy |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 11^{2} \) |
\( - 2^{28} \cdot 3^{4} \cdot 11^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$88$ |
$16$ |
$0$ |
$9.536855668$ |
$1$ |
|
$0$ |
$1013760$ |
$2.666389$ |
$43307231/82944$ |
$1.06329$ |
$5.45856$ |
$[0, -1, 0, 1386015, 954009729]$ |
\(y^2=x^3-x^2+1386015x+954009729\) |
4.8.0.b.1, 88.16.0.? |
$[(60879/5, 17122608/5)]$ |
23232.bi1 |
23232cx1 |
23232.bi |
23232cx |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 11^{2} \) |
\( - 2^{28} \cdot 3^{4} \cdot 11^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.16.0.3 |
|
$8$ |
$16$ |
$0$ |
$1.584599598$ |
$1$ |
|
$2$ |
$92160$ |
$1.467442$ |
$43307231/82944$ |
$1.06329$ |
$4.02745$ |
$[0, -1, 0, 11455, -720927]$ |
\(y^2=x^3-x^2+11455x-720927\) |
4.8.0.b.1, 8.16.0-4.b.1.1 |
$[(59, 396)]$ |
23232.cz1 |
23232bv1 |
23232.cz |
23232bv |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 11^{2} \) |
\( - 2^{28} \cdot 3^{4} \cdot 11^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.16.0.3 |
|
$8$ |
$16$ |
$0$ |
$0.968231616$ |
$1$ |
|
$4$ |
$92160$ |
$1.467442$ |
$43307231/82944$ |
$1.06329$ |
$4.02745$ |
$[0, 1, 0, 11455, 720927]$ |
\(y^2=x^3+x^2+11455x+720927\) |
4.8.0.b.1, 8.16.0-4.b.1.1 |
$[(187, 3072)]$ |
23232.di1 |
23232bu1 |
23232.di |
23232bu |
$1$ |
$1$ |
\( 2^{6} \cdot 3 \cdot 11^{2} \) |
\( - 2^{28} \cdot 3^{4} \cdot 11^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$88$ |
$16$ |
$0$ |
$5.825143114$ |
$1$ |
|
$0$ |
$1013760$ |
$2.666389$ |
$43307231/82944$ |
$1.06329$ |
$5.45856$ |
$[0, 1, 0, 1386015, -954009729]$ |
\(y^2=x^3+x^2+1386015x-954009729\) |
4.8.0.b.1, 88.16.0.? |
$[(7051/3, 668672/3)]$ |
35574.bg1 |
35574bc1 |
35574.bg |
35574bc |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \) |
\( - 2^{10} \cdot 3^{4} \cdot 7^{6} \cdot 11^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$308$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1520640$ |
$2.599621$ |
$43307231/82944$ |
$1.06329$ |
$5.16017$ |
$[1, 0, 1, 1061167, 639509924]$ |
\(y^2+xy+y=x^3+1061167x+639509924\) |
4.8.0.b.1, 308.16.0.? |
$[ ]$ |
35574.da1 |
35574da1 |
35574.da |
35574da |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \) |
\( - 2^{10} \cdot 3^{4} \cdot 7^{6} \cdot 11^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$28$ |
$16$ |
$0$ |
$0.157205073$ |
$1$ |
|
$10$ |
$138240$ |
$1.400675$ |
$43307231/82944$ |
$1.06329$ |
$3.78724$ |
$[1, 0, 0, 8770, -479676]$ |
\(y^2+xy=x^3+8770x-479676\) |
4.8.0.b.1, 28.16.0-4.b.1.1 |
$[(340, 6298)]$ |
54450.g1 |
54450cp1 |
54450.g |
54450cp |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{10} \cdot 3^{10} \cdot 5^{6} \cdot 11^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$660$ |
$16$ |
$0$ |
$11.04162346$ |
$1$ |
|
$0$ |
$5913600$ |
$2.980694$ |
$43307231/82944$ |
$1.06329$ |
$5.37808$ |
$[1, -1, 0, 4872708, 6290465616]$ |
\(y^2+xy=x^3-x^2+4872708x+6290465616\) |
4.8.0.b.1, 660.16.0.? |
$[(-176520/19, 423978684/19)]$ |
54450.he1 |
54450gd1 |
54450.he |
54450gd |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{10} \cdot 3^{10} \cdot 5^{6} \cdot 11^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$60$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$537600$ |
$1.781746$ |
$43307231/82944$ |
$1.06329$ |
$4.05874$ |
$[1, -1, 1, 40270, -4737103]$ |
\(y^2+xy+y=x^3-x^2+40270x-4737103\) |
4.8.0.b.1, 60.16.0-4.b.1.1 |
$[ ]$ |
69696.cf1 |
69696cb1 |
69696.cf |
69696cb |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 11^{2} \) |
\( - 2^{28} \cdot 3^{10} \cdot 11^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$24$ |
$16$ |
$0$ |
$1.113733657$ |
$1$ |
|
$4$ |
$737280$ |
$2.016747$ |
$43307231/82944$ |
$1.06329$ |
$4.22177$ |
$[0, 0, 0, 103092, -19361936]$ |
\(y^2=x^3+103092x-19361936\) |
4.8.0.b.1, 24.16.0-4.b.1.1 |
$[(462, 11264)]$ |
69696.cg1 |
69696gf1 |
69696.cg |
69696gf |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 11^{2} \) |
\( - 2^{28} \cdot 3^{10} \cdot 11^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$264$ |
$16$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$8110080$ |
$3.215694$ |
$43307231/82944$ |
$1.06329$ |
$5.51190$ |
$[0, 0, 0, 12474132, -25770736816]$ |
\(y^2=x^3+12474132x-25770736816\) |
4.8.0.b.1, 264.16.0.? |
$[ ]$ |
69696.cv1 |
69696gd1 |
69696.cv |
69696gd |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 11^{2} \) |
\( - 2^{28} \cdot 3^{10} \cdot 11^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$24$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$737280$ |
$2.016747$ |
$43307231/82944$ |
$1.06329$ |
$4.22177$ |
$[0, 0, 0, 103092, 19361936]$ |
\(y^2=x^3+103092x+19361936\) |
4.8.0.b.1, 24.16.0-4.b.1.1 |
$[ ]$ |
69696.cw1 |
69696bz1 |
69696.cw |
69696bz |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 11^{2} \) |
\( - 2^{28} \cdot 3^{10} \cdot 11^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$264$ |
$16$ |
$0$ |
$14.11207005$ |
$1$ |
|
$0$ |
$8110080$ |
$3.215694$ |
$43307231/82944$ |
$1.06329$ |
$5.51190$ |
$[0, 0, 0, 12474132, 25770736816]$ |
\(y^2=x^3+12474132x+25770736816\) |
4.8.0.b.1, 264.16.0.? |
$[(42532934/185, 1315884874752/185)]$ |
106722.bg1 |
106722da1 |
106722.bg |
106722da |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11^{2} \) |
\( - 2^{10} \cdot 3^{10} \cdot 7^{6} \cdot 11^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$84$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1105920$ |
$1.949982$ |
$43307231/82944$ |
$1.06329$ |
$3.99721$ |
$[1, -1, 0, 78930, 12951252]$ |
\(y^2+xy=x^3-x^2+78930x+12951252\) |
4.8.0.b.1, 84.16.0.? |
$[ ]$ |
106722.fm1 |
106722gp1 |
106722.fm |
106722gp |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11^{2} \) |
\( - 2^{10} \cdot 3^{10} \cdot 7^{6} \cdot 11^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$924$ |
$16$ |
$0$ |
$4.746287785$ |
$1$ |
|
$2$ |
$12165120$ |
$3.148930$ |
$43307231/82944$ |
$1.06329$ |
$5.23986$ |
$[1, -1, 1, 9550507, -17266767955]$ |
\(y^2+xy+y=x^3-x^2+9550507x-17266767955\) |
4.8.0.b.1, 924.16.0.? |
$[(2109, 109636)]$ |
122694.v1 |
122694s1 |
122694.v |
122694s |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 11^{2} \cdot 13^{2} \) |
\( - 2^{10} \cdot 3^{4} \cdot 11^{4} \cdot 13^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$52$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1077120$ |
$1.710196$ |
$43307231/82944$ |
$1.06329$ |
$3.70406$ |
$[1, 1, 0, 30248, 3089728]$ |
\(y^2+xy=x^3+x^2+30248x+3089728\) |
4.8.0.b.1, 52.16.0-4.b.1.1 |
$[ ]$ |
122694.ci1 |
122694ch1 |
122694.ci |
122694ch |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 11^{2} \cdot 13^{2} \) |
\( - 2^{10} \cdot 3^{4} \cdot 11^{10} \cdot 13^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$572$ |
$16$ |
$0$ |
$5.145864431$ |
$1$ |
|
$2$ |
$11848320$ |
$2.909142$ |
$43307231/82944$ |
$1.06329$ |
$4.93192$ |
$[1, 1, 1, 3659945, -4094128147]$ |
\(y^2+xy+y=x^3+x^2+3659945x-4094128147\) |
4.8.0.b.1, 572.16.0.? |
$[(1451, 64650)]$ |
145200.g1 |
145200er1 |
145200.g |
145200er |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{22} \cdot 3^{4} \cdot 5^{6} \cdot 11^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$20$ |
$16$ |
$0$ |
$5.064219825$ |
$1$ |
|
$2$ |
$1612800$ |
$1.925587$ |
$43307231/82944$ |
$1.06329$ |
$3.86904$ |
$[0, -1, 0, 71592, -11228688]$ |
\(y^2=x^3-x^2+71592x-11228688\) |
4.8.0.b.1, 20.16.0-4.b.1.1 |
$[(786, 23022)]$ |
145200.fm1 |
145200gq1 |
145200.fm |
145200gq |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{22} \cdot 3^{4} \cdot 5^{6} \cdot 11^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$220$ |
$16$ |
$0$ |
$24.85335063$ |
$1$ |
|
$0$ |
$17740800$ |
$3.124535$ |
$43307231/82944$ |
$1.06329$ |
$5.07950$ |
$[0, -1, 0, 8662592, 14910733312]$ |
\(y^2=x^3-x^2+8662592x+14910733312\) |
4.8.0.b.1, 220.16.0.? |
$[(-104606504246/9845, 62595617576636358/9845)]$ |
209814.br1 |
209814cb1 |
209814.br |
209814cb |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) |
\( - 2^{10} \cdot 3^{4} \cdot 11^{10} \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$748$ |
$16$ |
$0$ |
$13.24434903$ |
$1$ |
|
$0$ |
$27287040$ |
$3.043274$ |
$43307231/82944$ |
$1.06329$ |
$4.84733$ |
$[1, 0, 1, 6258722, -9158305840]$ |
\(y^2+xy+y=x^3+6258722x-9158305840\) |
4.8.0.b.1, 748.16.0.? |
$[(2786149/47, 2763492163/47)]$ |
209814.dg1 |
209814o1 |
209814.dg |
209814o |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) |
\( - 2^{10} \cdot 3^{4} \cdot 11^{4} \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$68$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2480640$ |
$1.844326$ |
$43307231/82944$ |
$1.06329$ |
$3.67324$ |
$[1, 0, 0, 51725, 6885473]$ |
\(y^2+xy=x^3+51725x+6885473\) |
4.8.0.b.1, 68.16.0-4.b.1.1 |
$[ ]$ |
262086.bi1 |
262086bi1 |
262086.bi |
262086bi |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 11^{2} \cdot 19^{2} \) |
\( - 2^{10} \cdot 3^{4} \cdot 11^{4} \cdot 19^{6} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$76$ |
$16$ |
$0$ |
$1.124142645$ |
$1$ |
|
$14$ |
$2903040$ |
$1.899939$ |
$43307231/82944$ |
$1.06329$ |
$3.66123$ |
$[1, 0, 1, 64611, -9601352]$ |
\(y^2+xy+y=x^3+64611x-9601352\) |
4.8.0.b.1, 76.16.0.? |
$[(296, 5808), (1379, 51294)]$ |
262086.dv1 |
262086dv1 |
262086.dv |
262086dv |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 11^{2} \cdot 19^{2} \) |
\( - 2^{10} \cdot 3^{4} \cdot 11^{10} \cdot 19^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$836$ |
$16$ |
$0$ |
$3.064827778$ |
$1$ |
|
$2$ |
$31933440$ |
$3.098888$ |
$43307231/82944$ |
$1.06329$ |
$4.81440$ |
$[1, 0, 0, 7817989, 12787217169]$ |
\(y^2+xy=x^3+7817989x+12787217169\) |
4.8.0.b.1, 836.16.0.? |
$[(2158, 198193)]$ |
284592.ds1 |
284592ds1 |
284592.ds |
284592ds |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 7^{2} \cdot 11^{2} \) |
\( - 2^{22} \cdot 3^{4} \cdot 7^{6} \cdot 11^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$28$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3317760$ |
$2.093822$ |
$43307231/82944$ |
$1.06329$ |
$3.82247$ |
$[0, -1, 0, 140320, 30699264]$ |
\(y^2=x^3-x^2+140320x+30699264\) |
4.8.0.b.1, 28.16.0-4.b.1.1 |
$[ ]$ |
284592.ee1 |
284592ee1 |
284592.ee |
284592ee |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 7^{2} \cdot 11^{2} \) |
\( - 2^{22} \cdot 3^{4} \cdot 7^{6} \cdot 11^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$308$ |
$16$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$36495360$ |
$3.292770$ |
$43307231/82944$ |
$1.06329$ |
$4.96807$ |
$[0, -1, 0, 16978680, -40928635152]$ |
\(y^2=x^3-x^2+16978680x-40928635152\) |
4.8.0.b.1, 308.16.0.? |
$[ ]$ |
368082.be1 |
368082be1 |
368082.be |
368082be |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 11^{2} \cdot 13^{2} \) |
\( - 2^{10} \cdot 3^{10} \cdot 11^{10} \cdot 13^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$1716$ |
$16$ |
$0$ |
$11.70834508$ |
$1$ |
|
$0$ |
$94786560$ |
$3.458447$ |
$43307231/82944$ |
$1.06329$ |
$5.02348$ |
$[1, -1, 0, 32939505, 110574399469]$ |
\(y^2+xy=x^3-x^2+32939505x+110574399469\) |
4.8.0.b.1, 1716.16.0.? |
$[(1233038/13, 1880964437/13)]$ |
368082.ft1 |
368082ft1 |
368082.ft |
368082ft |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 11^{2} \cdot 13^{2} \) |
\( - 2^{10} \cdot 3^{10} \cdot 11^{4} \cdot 13^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$156$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$8616960$ |
$2.259502$ |
$43307231/82944$ |
$1.06329$ |
$3.90087$ |
$[1, -1, 1, 272227, -83150427]$ |
\(y^2+xy+y=x^3-x^2+272227x-83150427\) |
4.8.0.b.1, 156.16.0.? |
$[ ]$ |
384054.m1 |
384054m1 |
384054.m |
384054m |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 11^{2} \cdot 23^{2} \) |
\( - 2^{10} \cdot 3^{4} \cdot 11^{10} \cdot 23^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$1012$ |
$16$ |
$0$ |
$4.346170618$ |
$1$ |
|
$2$ |
$59473920$ |
$3.194416$ |
$43307231/82944$ |
$1.06329$ |
$4.76048$ |
$[1, 1, 0, 11456278, 22686526548]$ |
\(y^2+xy=x^3+x^2+11456278x+22686526548\) |
4.8.0.b.1, 1012.16.0.? |
$[(28004, 4708910)]$ |
384054.co1 |
384054co1 |
384054.co |
384054co |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 11^{2} \cdot 23^{2} \) |
\( - 2^{10} \cdot 3^{4} \cdot 11^{4} \cdot 23^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$92$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5406720$ |
$1.995466$ |
$43307231/82944$ |
$1.06329$ |
$3.64158$ |
$[1, 1, 1, 94680, -17001687]$ |
\(y^2+xy+y=x^3+x^2+94680x-17001687\) |
4.8.0.b.1, 92.16.0.? |
$[ ]$ |
435600.bh1 |
435600bh1 |
435600.bh |
435600bh |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{22} \cdot 3^{10} \cdot 5^{6} \cdot 11^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$60$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$12902400$ |
$2.474892$ |
$43307231/82944$ |
$1.06329$ |
$4.04934$ |
$[0, 0, 0, 644325, 302530250]$ |
\(y^2=x^3+644325x+302530250\) |
4.8.0.b.1, 60.16.0-4.b.1.1 |
$[ ]$ |
435600.tn1 |
435600tn1 |
435600.tn |
435600tn |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2} \) |
\( - 2^{22} \cdot 3^{10} \cdot 5^{6} \cdot 11^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.8.0.2 |
|
$660$ |
$16$ |
$0$ |
$1$ |
$25$ |
$5$ |
$0$ |
$141926400$ |
$3.673840$ |
$43307231/82944$ |
$1.06329$ |
$5.15738$ |
$[0, 0, 0, 77963325, -402667762750]$ |
\(y^2=x^3+77963325x-402667762750\) |
4.8.0.b.1, 660.16.0.? |
$[ ]$ |