| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 2057.c1 |
2057a1 |
2057.c |
2057a |
$1$ |
$1$ |
\( 11^{2} \cdot 17 \) |
\( - 11^{3} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.18.0.1 |
3Ns |
$3366$ |
$72$ |
$3$ |
$1.040968105$ |
$1$ |
|
$2$ |
$360$ |
$-0.006020$ |
$4096000/4913$ |
$0.90722$ |
$2.94788$ |
$[0, -1, 1, 37, 76]$ |
\(y^2+y=x^3-x^2+37x+76\) |
3.6.0.b.1, 9.18.0.a.1, 33.12.0.a.1, 99.36.0.?, 102.12.0.?, $\ldots$ |
$[(4, 16)]$ |
$1$ |
| 2057.d1 |
2057b1 |
2057.d |
2057b |
$1$ |
$1$ |
\( 11^{2} \cdot 17 \) |
\( - 11^{9} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.18.0.1 |
3Ns |
$3366$ |
$72$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$3960$ |
$1.192928$ |
$4096000/4913$ |
$0.90722$ |
$4.83375$ |
$[0, -1, 1, 4437, -119285]$ |
\(y^2+y=x^3-x^2+4437x-119285\) |
3.6.0.b.1, 9.18.0.a.1, 33.12.0.a.1, 99.36.0.?, 102.12.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 18513.k1 |
18513i1 |
18513.k |
18513i |
$1$ |
$1$ |
\( 3^{2} \cdot 11^{2} \cdot 17 \) |
\( - 3^{6} \cdot 11^{3} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.18.0.1 |
3Ns |
$3366$ |
$72$ |
$3$ |
$0.396891288$ |
$1$ |
|
$4$ |
$8640$ |
$0.543286$ |
$4096000/4913$ |
$0.90722$ |
$2.95953$ |
$[0, 0, 1, 330, -2390]$ |
\(y^2+y=x^3+330x-2390\) |
3.6.0.b.1, 9.18.0.a.1, 33.12.0.a.1, 99.36.0.?, 102.12.0.?, $\ldots$ |
$[(88, 841)]$ |
$1$ |
| 18513.l1 |
18513g1 |
18513.l |
18513g |
$1$ |
$1$ |
\( 3^{2} \cdot 11^{2} \cdot 17 \) |
\( - 3^{6} \cdot 11^{9} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.18.0.1 |
3Ns |
$3366$ |
$72$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$95040$ |
$1.742233$ |
$4096000/4913$ |
$0.90722$ |
$4.42371$ |
$[0, 0, 1, 39930, 3180757]$ |
\(y^2+y=x^3+39930x+3180757\) |
3.6.0.b.1, 9.18.0.a.1, 33.12.0.a.1, 99.36.0.?, 102.12.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 32912.b1 |
32912s1 |
32912.b |
32912s |
$1$ |
$1$ |
\( 2^{4} \cdot 11^{2} \cdot 17 \) |
\( - 2^{12} \cdot 11^{9} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.18.0.1 |
3Ns |
$3366$ |
$72$ |
$3$ |
$1.360361586$ |
$1$ |
|
$2$ |
$285120$ |
$1.886076$ |
$4096000/4913$ |
$0.90722$ |
$4.34496$ |
$[0, 1, 0, 70987, 7563235]$ |
\(y^2=x^3+x^2+70987x+7563235\) |
3.6.0.b.1, 9.18.0.a.1, 33.12.0.a.1, 99.36.0.?, 102.12.0.?, $\ldots$ |
$[(766, 22627)]$ |
$1$ |
| 32912.d1 |
32912q1 |
32912.d |
32912q |
$1$ |
$1$ |
\( 2^{4} \cdot 11^{2} \cdot 17 \) |
\( - 2^{12} \cdot 11^{3} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.18.0.1 |
3Ns |
$3366$ |
$72$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$25920$ |
$0.687128$ |
$4096000/4913$ |
$0.90722$ |
$2.96177$ |
$[0, 1, 0, 587, -5469]$ |
\(y^2=x^3+x^2+587x-5469\) |
3.6.0.b.1, 9.18.0.a.1, 33.12.0.a.1, 99.36.0.?, 102.12.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 34969.g1 |
34969c1 |
34969.g |
34969c |
$1$ |
$1$ |
\( 11^{2} \cdot 17^{2} \) |
\( - 11^{9} \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.18.0.1 |
3Ns |
$3366$ |
$72$ |
$3$ |
$3.596142102$ |
$1$ |
|
$2$ |
$1140480$ |
$2.609535$ |
$4096000/4913$ |
$0.90722$ |
$5.14958$ |
$[0, 1, 1, 1282197, -578352615]$ |
\(y^2+y=x^3+x^2+1282197x-578352615\) |
3.6.0.b.1, 9.18.0.a.1, 33.12.0.a.1, 99.36.0.?, 102.12.0.?, $\ldots$ |
$[(403, 1996)]$ |
$1$ |
| 34969.h1 |
34969b1 |
34969.h |
34969b |
$1$ |
$1$ |
\( 11^{2} \cdot 17^{2} \) |
\( - 11^{3} \cdot 17^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.18.0.1 |
3Ns |
$3366$ |
$72$ |
$3$ |
$1.113085534$ |
$1$ |
|
$2$ |
$103680$ |
$1.410587$ |
$4096000/4913$ |
$0.90722$ |
$3.77440$ |
$[0, 1, 1, 10597, 438378]$ |
\(y^2+y=x^3+x^2+10597x+438378\) |
3.6.0.b.1, 9.18.0.a.1, 33.12.0.a.1, 99.36.0.?, 102.12.0.?, $\ldots$ |
$[(368, 7369)]$ |
$1$ |
| 51425.q1 |
51425a1 |
51425.q |
51425a |
$1$ |
$1$ |
\( 5^{2} \cdot 11^{2} \cdot 17 \) |
\( - 5^{6} \cdot 11^{9} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.18.0.1 |
3Ns |
$3366$ |
$72$ |
$3$ |
$4.359233154$ |
$1$ |
|
$2$ |
$570240$ |
$1.997646$ |
$4096000/4913$ |
$0.90722$ |
$4.28963$ |
$[0, 1, 1, 110917, -14688756]$ |
\(y^2+y=x^3+x^2+110917x-14688756\) |
3.6.0.b.1, 9.18.0.a.1, 33.12.0.a.1, 99.36.0.?, 102.12.0.?, $\ldots$ |
$[(118, 237)]$ |
$1$ |
| 51425.r1 |
51425c1 |
51425.r |
51425c |
$1$ |
$1$ |
\( 5^{2} \cdot 11^{2} \cdot 17 \) |
\( - 5^{6} \cdot 11^{3} \cdot 17^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.18.0.1 |
3Ns |
$3366$ |
$72$ |
$3$ |
$0.711002427$ |
$1$ |
|
$12$ |
$51840$ |
$0.798699$ |
$4096000/4913$ |
$0.90722$ |
$2.96334$ |
$[0, 1, 1, 917, 11369]$ |
\(y^2+y=x^3+x^2+917x+11369\) |
3.6.0.b.1, 9.18.0.a.1, 33.12.0.a.1, 99.36.0.?, 102.12.0.?, $\ldots$ |
$[(23, 212), (73, 687)]$ |
$1$ |
| 100793.f1 |
100793g1 |
100793.f |
100793g |
$1$ |
$1$ |
\( 7^{2} \cdot 11^{2} \cdot 17 \) |
\( - 7^{6} \cdot 11^{3} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.18.0.1 |
3Ns |
$3366$ |
$72$ |
$3$ |
$0.866327885$ |
$1$ |
|
$4$ |
$118800$ |
$0.966935$ |
$4096000/4913$ |
$0.90722$ |
$2.96548$ |
$[0, 1, 1, 1797, -29760]$ |
\(y^2+y=x^3+x^2+1797x-29760\) |
3.6.0.b.1, 9.18.0.a.1, 33.12.0.a.1, 99.36.0.?, 102.12.0.?, $\ldots$ |
$[(18, 93)]$ |
$1$ |
| 100793.h1 |
100793d1 |
100793.h |
100793d |
$1$ |
$1$ |
\( 7^{2} \cdot 11^{2} \cdot 17 \) |
\( - 7^{6} \cdot 11^{9} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.18.0.1 |
3Ns |
$3366$ |
$72$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$1306800$ |
$2.165882$ |
$4096000/4913$ |
$0.90722$ |
$4.21430$ |
$[0, 1, 1, 217397, 40479863]$ |
\(y^2+y=x^3+x^2+217397x+40479863\) |
3.6.0.b.1, 9.18.0.a.1, 33.12.0.a.1, 99.36.0.?, 102.12.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 131648.h1 |
131648bp1 |
131648.h |
131648bp |
$1$ |
$1$ |
\( 2^{6} \cdot 11^{2} \cdot 17 \) |
\( - 2^{6} \cdot 11^{3} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.18.0.1 |
3Ns |
$3366$ |
$72$ |
$3$ |
$1.462222308$ |
$1$ |
|
$2$ |
$51840$ |
$0.340554$ |
$4096000/4913$ |
$0.90722$ |
$2.26065$ |
$[0, 1, 0, 147, 757]$ |
\(y^2=x^3+x^2+147x+757\) |
3.6.0.b.1, 9.18.0.a.1, 33.12.0.a.1, 99.36.0.?, 102.12.0.?, $\ldots$ |
$[(-4, 11)]$ |
$1$ |
| 131648.n1 |
131648br1 |
131648.n |
131648br |
$1$ |
$1$ |
\( 2^{6} \cdot 11^{2} \cdot 17 \) |
\( - 2^{6} \cdot 11^{9} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.18.0.1 |
3Ns |
$3366$ |
$72$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$570240$ |
$1.539501$ |
$4096000/4913$ |
$0.90722$ |
$3.48117$ |
$[0, 1, 0, 17747, -936531]$ |
\(y^2=x^3+x^2+17747x-936531\) |
3.6.0.b.1, 9.18.0.a.1, 33.12.0.a.1, 99.36.0.?, 102.12.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 131648.cf1 |
131648bg1 |
131648.cf |
131648bg |
$1$ |
$1$ |
\( 2^{6} \cdot 11^{2} \cdot 17 \) |
\( - 2^{6} \cdot 11^{9} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.18.0.1 |
3Ns |
$3366$ |
$72$ |
$3$ |
$4.733888991$ |
$1$ |
|
$0$ |
$570240$ |
$1.539501$ |
$4096000/4913$ |
$0.90722$ |
$3.48117$ |
$[0, -1, 0, 17747, 936531]$ |
\(y^2=x^3-x^2+17747x+936531\) |
3.6.0.b.1, 9.18.0.a.1, 33.12.0.a.1, 99.36.0.?, 102.12.0.?, $\ldots$ |
$[(19750/9, 3235661/9)]$ |
$1$ |
| 131648.cl1 |
131648bi1 |
131648.cl |
131648bi |
$1$ |
$1$ |
\( 2^{6} \cdot 11^{2} \cdot 17 \) |
\( - 2^{6} \cdot 11^{3} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.18.0.1 |
3Ns |
$3366$ |
$72$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$51840$ |
$0.340554$ |
$4096000/4913$ |
$0.90722$ |
$2.26065$ |
$[0, -1, 0, 147, -757]$ |
\(y^2=x^3-x^2+147x-757\) |
3.6.0.b.1, 9.18.0.a.1, 33.12.0.a.1, 99.36.0.?, 102.12.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 296208.cr1 |
296208cr1 |
296208.cr |
296208cr |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 11^{2} \cdot 17 \) |
\( - 2^{12} \cdot 3^{6} \cdot 11^{9} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.18.0.1 |
3Ns |
$3366$ |
$72$ |
$3$ |
$7.370710489$ |
$1$ |
|
$0$ |
$6842880$ |
$2.435383$ |
$4096000/4913$ |
$0.90722$ |
$4.11040$ |
$[0, 0, 0, 638880, -203568464]$ |
\(y^2=x^3+638880x-203568464\) |
3.6.0.b.1, 9.18.0.a.1, 33.12.0.a.1, 99.36.0.?, 102.12.0.?, $\ldots$ |
$[(144353/8, 57726801/8)]$ |
$1$ |
| 296208.dq1 |
296208dq1 |
296208.dq |
296208dq |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 11^{2} \cdot 17 \) |
\( - 2^{12} \cdot 3^{6} \cdot 11^{3} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.18.0.1 |
3Ns |
$3366$ |
$72$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$622080$ |
$1.236433$ |
$4096000/4913$ |
$0.90722$ |
$2.96844$ |
$[0, 0, 0, 5280, 152944]$ |
\(y^2=x^3+5280x+152944\) |
3.6.0.b.1, 9.18.0.a.1, 33.12.0.a.1, 99.36.0.?, 102.12.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 314721.bj1 |
314721bj1 |
314721.bj |
314721bj |
$1$ |
$1$ |
\( 3^{2} \cdot 11^{2} \cdot 17^{2} \) |
\( - 3^{6} \cdot 11^{9} \cdot 17^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.18.0.1 |
3Ns |
$3366$ |
$72$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$27371520$ |
$3.158840$ |
$4096000/4913$ |
$0.90722$ |
$4.77649$ |
$[0, 0, 1, 11539770, 15627060369]$ |
\(y^2+y=x^3+11539770x+15627060369\) |
3.6.0.b.1, 9.18.0.a.1, 33.12.0.a.1, 99.36.0.?, 102.12.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 314721.bo1 |
314721bo1 |
314721.bo |
314721bo |
$1$ |
$1$ |
\( 3^{2} \cdot 11^{2} \cdot 17^{2} \) |
\( - 3^{6} \cdot 11^{3} \cdot 17^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.18.0.1 |
3Ns |
$3366$ |
$72$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$2488320$ |
$1.959894$ |
$4096000/4913$ |
$0.90722$ |
$3.64000$ |
$[0, 0, 1, 95370, -11740842]$ |
\(y^2+y=x^3+95370x-11740842\) |
3.6.0.b.1, 9.18.0.a.1, 33.12.0.a.1, 99.36.0.?, 102.12.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 347633.o1 |
347633o1 |
347633.o |
347633o |
$1$ |
$1$ |
\( 11^{2} \cdot 13^{2} \cdot 17 \) |
\( - 11^{9} \cdot 13^{6} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.18.0.1 |
3Ns |
$3366$ |
$72$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$7603200$ |
$2.475403$ |
$4096000/4913$ |
$0.90722$ |
$4.09647$ |
$[0, -1, 1, 749797, -259069328]$ |
\(y^2+y=x^3-x^2+749797x-259069328\) |
3.6.0.b.1, 9.18.0.a.1, 33.12.0.a.1, 99.36.0.?, 102.12.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 347633.p1 |
347633p1 |
347633.p |
347633p |
$1$ |
$1$ |
\( 11^{2} \cdot 13^{2} \cdot 17 \) |
\( - 11^{3} \cdot 13^{6} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.18.0.1 |
3Ns |
$3366$ |
$72$ |
$3$ |
$6.326859107$ |
$1$ |
|
$0$ |
$691200$ |
$1.276455$ |
$4096000/4913$ |
$0.90722$ |
$2.96883$ |
$[0, -1, 1, 6197, 192389]$ |
\(y^2+y=x^3-x^2+6197x+192389\) |
3.6.0.b.1, 9.18.0.a.1, 33.12.0.a.1, 99.36.0.?, 102.12.0.?, $\ldots$ |
$[(20047/9, 2989837/9)]$ |
$1$ |
| 462825.cj1 |
462825cj1 |
462825.cj |
462825cj |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 11^{2} \cdot 17 \) |
\( - 3^{6} \cdot 5^{6} \cdot 11^{9} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.18.0.1 |
3Ns |
$3366$ |
$72$ |
$3$ |
$2.181379716$ |
$1$ |
|
$0$ |
$13685760$ |
$2.546951$ |
$4096000/4913$ |
$0.90722$ |
$4.07241$ |
$[0, 0, 1, 998250, 397594656]$ |
\(y^2+y=x^3+998250x+397594656\) |
3.6.0.b.1, 9.18.0.a.1, 33.12.0.a.1, 99.36.0.?, 102.12.0.?, $\ldots$ |
$[(-2420/3, 282824/3)]$ |
$1$ |
| 462825.cv1 |
462825cv1 |
462825.cv |
462825cv |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 11^{2} \cdot 17 \) |
\( - 3^{6} \cdot 5^{6} \cdot 11^{3} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.18.0.1 |
3Ns |
$3366$ |
$72$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$1244160$ |
$1.348005$ |
$4096000/4913$ |
$0.90722$ |
$2.96952$ |
$[0, 0, 1, 8250, -298719]$ |
\(y^2+y=x^3+8250x-298719\) |
3.6.0.b.1, 9.18.0.a.1, 33.12.0.a.1, 99.36.0.?, 102.12.0.?, $\ldots$ |
$[ ]$ |
$1$ |