Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
50350.e1 |
50350a1 |
50350.e |
50350a |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( 2^{10} \cdot 5^{10} \cdot 19 \cdot 53 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4028$ |
$2$ |
$0$ |
$4.255553421$ |
$1$ |
|
$2$ |
$100800$ |
$1.203455$ |
$3871353825/1031168$ |
$0.81879$ |
$3.52564$ |
$[1, -1, 0, -6992, -163584]$ |
\(y^2+xy=x^3-x^2-6992x-163584\) |
4028.2.0.? |
$[(-27, 84)]$ |
50350.l1 |
50350o1 |
50350.l |
50350o |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( 2^{10} \cdot 5^{4} \cdot 19 \cdot 53 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4028$ |
$2$ |
$0$ |
$0.345497273$ |
$1$ |
|
$20$ |
$20160$ |
$0.398736$ |
$3871353825/1031168$ |
$0.81879$ |
$2.63372$ |
$[1, -1, 1, -280, -1253]$ |
\(y^2+xy+y=x^3-x^2-280x-1253\) |
4028.2.0.? |
$[(-11, 25), (-7, 21)]$ |
402800.j1 |
402800j1 |
402800.j |
402800j |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( 2^{22} \cdot 5^{10} \cdot 19 \cdot 53 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4028$ |
$2$ |
$0$ |
$5.124365390$ |
$1$ |
|
$2$ |
$2419200$ |
$1.896603$ |
$3871353825/1031168$ |
$0.81879$ |
$3.60207$ |
$[0, 0, 0, -111875, 10581250]$ |
\(y^2=x^3-111875x+10581250\) |
4028.2.0.? |
$[(279, 1042)]$ |
402800.y1 |
402800y1 |
402800.y |
402800y |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( 2^{22} \cdot 5^{4} \cdot 19 \cdot 53 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4028$ |
$2$ |
$0$ |
$2.428632903$ |
$1$ |
|
$2$ |
$483840$ |
$1.091883$ |
$3871353825/1031168$ |
$0.81879$ |
$2.85385$ |
$[0, 0, 0, -4475, 84650]$ |
\(y^2=x^3-4475x+84650\) |
4028.2.0.? |
$[(55, 70)]$ |
453150.i1 |
453150i1 |
453150.i |
453150i |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( 2^{10} \cdot 3^{6} \cdot 5^{4} \cdot 19 \cdot 53 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4028$ |
$2$ |
$0$ |
$1.382795951$ |
$1$ |
|
$2$ |
$645120$ |
$0.948042$ |
$3871353825/1031168$ |
$0.81879$ |
$2.69551$ |
$[1, -1, 0, -2517, 36341]$ |
\(y^2+xy=x^3-x^2-2517x+36341\) |
4028.2.0.? |
$[(58, 259)]$ |
453150.fs1 |
453150fs1 |
453150.fs |
453150fs |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 53 \) |
\( 2^{10} \cdot 3^{6} \cdot 5^{10} \cdot 19 \cdot 53 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4028$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3225600$ |
$1.752762$ |
$3871353825/1031168$ |
$0.81879$ |
$3.43696$ |
$[1, -1, 1, -62930, 4479697]$ |
\(y^2+xy+y=x^3-x^2-62930x+4479697\) |
4028.2.0.? |
$[ ]$ |